
Dimensionality Reduction




Multidimensional scaling




Multidimensional Scaling，MDS

• MDS is a data analysis method which simplifies the research objects of multidimensional 

space to low-dimensional space for positioning, analysis and classification, while retaining 

the original relationship between objects.

• Applications: market research, stock market analysis, data compression……



Processing of higher-dimensional surfaces

• A two dimensional surface in three dimensional space is transformed into a two dimensional 

plane, and the Euclidean distance between the planar vertices is approximately the same as 

that of the surface's geodesic.

• Convert a matrix 𝐴𝐴3×𝑛𝑛 to 𝐴𝐴2×𝑛𝑛
′ ，hope ∀𝑖𝑖, 𝑗𝑗 ∈ 1,𝑁𝑁 ,𝑑𝑑 𝐴𝐴−𝑖𝑖,𝐴𝐴−𝑗𝑗 ≈ 𝐴𝐴−𝑖𝑖′ − 𝐴𝐴−𝑗𝑗′

2
, where 

𝑑𝑑 𝑎𝑎, 𝑏𝑏 is the geodesic distance between points a and b on the original surface.



Concrete implementation

• First, we need to calculate the geodesic distance between two selected points of a given 

surface, which is a conditional extremum problem.

• Find a curve 𝐿𝐿 under 𝐺𝐺 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 0：𝐿𝐿 = ∫𝑥𝑥0
𝑥𝑥1 1 + 𝑦𝑦′2 + 𝑧𝑧′2𝑑𝑑𝑑𝑑 that minimizes the 

equation Γ = �𝑦𝑦 = 𝑦𝑦(𝑥𝑥)
𝑧𝑧 = 𝑧𝑧(𝑥𝑥) , (𝑥𝑥0 ≤ 𝑥𝑥 ≤ 𝑥𝑥1)

• Fast marching algorithm similar to Dijkstra
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However, the solution of the above equation is relatively complex. In practice, we adopt another Fast marching algorithm similar to Dijkstra, and the main idea is that the derivative of T with respect to length s is always 1 as for the distance T on a straight line. So let's say for each of these little triangles that the T function on the plane, approximately the initial point is infinity on the plane, then the gradient of T is also 1, and the direction is constant.




• The Fast marching algorithm calculates the distance 𝑇𝑇(𝑏𝑏) from point 𝑏𝑏 to origin 

𝑎𝑎 :

• Init: add 𝑎𝑎 to the determined set 𝑉𝑉(initially empty), 𝑇𝑇(𝑎𝑎) = 0, add the nearest 

point 𝑎𝑎1 to 𝑉𝑉, and 𝑇𝑇 𝑎𝑎1 is the length of the edge (𝑎𝑎,𝑎𝑎1).

• Step 1: select the point 𝑣𝑣3 that forms a triangle with two points in 𝑉𝑉 and 𝑣𝑣3 is 

not in 𝑉𝑉, calculate its 𝑇𝑇(𝑣𝑣3) as shown in the right figure, and add all this 𝑣𝑣3 to 

the minimum heap to be selected (update the 𝑇𝑇 value if 𝑣𝑣3 already exists).

• Step 2: if the heap is empty, the algorithm ends; otherwise, transfer the heap 

top 𝑣𝑣 element to 𝑉𝑉, and 𝑇𝑇 𝑣𝑣 is the record T in the heap.

• Step 3：go to Step 1.



Concrete implementation
• Now we have the matrix 𝐸𝐸:𝐸𝐸𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑖𝑖2 composed of the geodesic distance 𝑑𝑑𝑖𝑖𝑖𝑖 =

𝑑𝑑(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) between points. Then turn the question into:

• 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} is an 𝑛𝑛 × 𝑞𝑞 matrix, 𝑛𝑛 is the sample number, 𝑞𝑞 is the data dimension, 

where each 𝑥𝑥𝑖𝑖 is a row of the matrix 𝑋𝑋. But we only know the distance between two data, in 

terms of the matrix 𝐸𝐸

𝐸𝐸𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑖𝑖2 = �
𝑎𝑎=1

𝑚𝑚

𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑗𝑗𝑗𝑗
2 ,𝐸𝐸 = 𝑐𝑐1′ + 1𝑐𝑐′ − 2𝑋𝑋𝑋𝑋′, 𝑐𝑐𝑖𝑖= �

𝑎𝑎=1

𝑚𝑚

𝑥𝑥𝑖𝑖𝑖𝑖2

• Find the method of dimensionality reduction to minimize the change of each distance.
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and we can raise the dimension of the vector in the original three-dimensional space to make the Euclidean distance in the high-dimensional space equal to d, and it is easy to know that it can be raised to N dimension at most. 



PCA & Kernel PCA




Linear dimensionality reduction - PCA

• 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ∈ ℝ𝑑𝑑 , 𝑚𝑚 = 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 = 𝑥𝑥𝑖𝑖 − 𝑚𝑚

• 𝑌𝑌 =
𝑦𝑦1𝑇𝑇
⋮
𝑦𝑦𝑛𝑛𝑇𝑇

, 𝑆𝑆 = 𝑌𝑌𝑇𝑇𝑌𝑌 = 𝑉𝑉Λ𝑉𝑉𝑇𝑇

• 𝜆𝜆1 ≥ ⋯ ≥ 𝜆𝜆𝑑𝑑 ; 𝑣𝑣1, … , 𝑣𝑣𝑑𝑑

• 𝑥𝑥𝑖𝑖 = 𝑚𝑚 + 𝛼𝛼𝑖𝑖,1𝑣𝑣1 + ⋯+ 𝛼𝛼𝑖𝑖,𝑑𝑑𝑣𝑣𝑑𝑑 → 𝑥𝑥𝑖𝑖 = 𝑚𝑚 + 𝛼𝛼𝑖𝑖,1𝑣𝑣1 + ⋯+ 𝛼𝛼𝑖𝑖,𝑑𝑑′𝑣𝑣𝑑𝑑′



Can we reduce the amount of calculation?

• If the dimension is too high, we may face trouble 

decomposing 𝑆𝑆 = 𝑌𝑌𝑇𝑇𝑌𝑌 = 𝑉𝑉Λ𝑉𝑉𝑇𝑇…

• And if we have 𝑑𝑑 > 𝑛𝑛, then we can apply a trick…

• And this trick is really important…



Limitations of PCA – Linearity 



Non-linear methods



Kernel PCA – kernel function

• Kernel: Φ:ℝ𝑑𝑑 → ℝ �𝑑𝑑 , 𝑥𝑥𝑖𝑖 ⟼ Φ 𝑥𝑥𝑖𝑖

• Φ does not need to be explicitly computed, only the dot product 

Φ 𝑥𝑥𝑖𝑖 ,Φ(𝑥𝑥𝑗𝑗) is needed and applied.

• 𝐾𝐾𝑛𝑛×𝑛𝑛 ≔ 𝐾𝐾𝑖𝑖𝑖𝑖 = Κ(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)(1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑛𝑛)



Kernel PCA – center the data

• 𝑋𝑋Φ ≔
Φ 𝑥𝑥1 𝑇𝑇

⋮
Φ 𝑥𝑥𝑛𝑛 𝑇𝑇

𝑛𝑛×�d

• Yet, PCA operates on centered data.

• So an operator comes to rescue: 𝐽𝐽 = 𝐼𝐼𝑛𝑛×𝑛𝑛 − 1𝑛𝑛

• 𝑌𝑌Φ = 𝐽𝐽𝑋𝑋Φ is centered.



Kernel PCA – apply the trick

• 𝑌𝑌Φ = 𝐽𝐽𝑋𝑋Φ ⟹ �𝐾𝐾 = 𝐾𝐾 − 1𝑛𝑛𝐾𝐾 − 𝐾𝐾1𝑛𝑛 + 1𝑛𝑛𝐾𝐾1𝑛𝑛

• So now we have �𝐾𝐾 = 𝑌𝑌Φ𝑌𝑌Φ𝑇𝑇, but we need the eigenvalues and 

eigenvectors of 𝑆𝑆 = 𝑌𝑌Φ𝑇𝑇𝑌𝑌Φ.

• And the trick we emphasized before can be applied.

• 



Some useful kernels

• Κ 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 =

• 𝑥𝑥𝑖𝑖 � 𝑥𝑥𝑗𝑗 + 1 𝑝𝑝
polynomial kernel

• 𝑒𝑒−
1

2𝜎𝜎2
𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗

2

Gaussian kernel

• 𝑒𝑒−𝛾𝛾 𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗
2

RBF kernel
• tanh(𝜂𝜂𝑥𝑥𝑖𝑖 � 𝑥𝑥𝑗𝑗 + 𝑣𝑣) sigmoid kernel



Are these kernels really inner product? 



RBF kernel 



RBF kernel

• Gaussian kernel is used most commonly 

• The effect of the parameter gamma

• from sklearn document



General case

• Theorem (Mercer’s theorem, simplified)

• Suppose Κ 𝑥𝑥, 𝑦𝑦 ∈ 𝐿𝐿2(ℝ𝑑𝑑 × ℝ𝑑𝑑) is a positive definite kernel. Then, 

there exists a sequence of functions 𝜑𝜑𝑖𝑖 𝑥𝑥 𝑖𝑖=1
∞ such that Κ 𝑥𝑥,𝑦𝑦 =

∑𝑖𝑖=1∞ 𝜑𝜑𝑖𝑖 𝑥𝑥 𝜑𝜑𝑖𝑖 𝑦𝑦 , with convergence in the 𝐿𝐿2 norm.



Kernel function maps

• Map surfaces to functions with kernel trick



Getting back…




• In order to conduct PCA decomposition, it is necessary to mean X to zero. More generally, 

the new origin is set as the weighted average of samples:

• When mean zero, take             ，

• The result of inner product can be calculated by E, that is, Kernel PCA method can be used



• 𝐵𝐵 is the inner product matrix in Kernel PCA, and the aforementioned method can be used 

for it. Let 𝜆𝜆𝑖𝑖be the 𝑖𝑖𝑡𝑡𝑡 eigenvalue of 𝐵𝐵, and 𝑣𝑣𝑖𝑖be the 𝑖𝑖𝑡𝑡𝑡 row eigenvector, 𝑖𝑖. 𝑒𝑒.

• Then the column vectors lined up with the coordinate values of each X vector in

the vi direction are

• In specific problems, a small number of data points are generally selected for dimensionality 

reduction, and the remaining data points are mapped by the difference method

Λ is eigenvalue diagonal matrix

�𝑋𝑋𝑖𝑖 𝑗𝑗 is the 𝑖𝑖𝑡𝑡𝑡 coordinate value of the 𝑗𝑗𝑡𝑡𝑡data



• Interpolation method: the position of (t, s) in the dimension reduction plane is determined 

according to the proportion of four points in (v, u) plane:



• The result obtained by flattening the face surface in 3d



• Texture mapping based on the correspondence between plane and surface



OBB method

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Bounding boxes are widely used in collision detection. Because the bounding box is usually a regular object, it is more efficient and simpler to use it instead of the object itself.




Classification of bounding boxes

The AABB bounding box is aligned with the axis and is easy to generate, but it does not rotate with 

the object and does not perform well for more accurate collision detection. OBB bounding box is 

always generates a minimum rectangular bounding box along the principal component direction of 

the object, which can be rotated with the object for more accurate detection.



Calculating process

covariance matrix

• The covariance matrix is a real symmetric matrix, so it can be diagonalized.

• The eigenvectors of the covariance matrix represent the direction of the OBB 

bounding box.

• The OBB bounding box axes should follow the direction of the eigenvector 

corresponding to the maximum eigenvalue.



• (3.7, 1.7), (4.1, 3.8), (4.7, 2.9), (5.2, 2.8), (6.0, 4.0), (6.3, 3.6), (9.7, 6.3), (10.0, 4.9), (11.0, 3.6), (12.5, 6.4)

Step 1. Calculate the covariance matrix

Step 2. diagonalize A

Step 3. Take the eigenvector as the direction of OBB



Two directions of the bounding box



OBB and collision detection

• Two convex hull polygons do not intersect, iif there is a line (Separating Axis) , their 

projections on that line do not intersect.



OBB and collision detection

• To find the separation axis, try only on the sides of two rectangles (four directions in total).

• In the figure below, 2 is not the split axis and 1 is the split axis



OBB and collision detection
| 𝑇𝑇 • 𝐿𝐿 | > | ( 𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴 ) • 𝐿𝐿 | + | ( 𝐻𝐻𝐴𝐴𝐴𝐴𝐴𝐴 ) • 𝐿𝐿 | + | ( 𝑊𝑊𝐵𝐵𝐵𝐵𝐵𝐵 ) • 𝐿𝐿 | + |( 𝐻𝐻𝐵𝐵𝐵𝐵𝐵𝐵 ) • 𝐿𝐿 |

• Try the four values of L, if there is one that satisfies the condition, then there is no 

collision.



Non-rigid Surfaces Matching




Task Description

• Shape retrieval

• Shape correspondence

• Different poses of a deformable object



Geodesic Distance

• Use geodesic distance to describe the intrinsic structure of the surface.

• Alg. fast marching on triangulated domains:  compute the geodesic distance between 

𝑛𝑛 points out of 𝑁𝑁 points in 𝑂𝑂(𝑛𝑛𝑛𝑛)



Triangulation

• Triangulate the surface

• Choose a small subset of vertexes (“far” from each other)

• Voronoi sampling

• Obtain an 𝑛𝑛 × 𝑛𝑛 matrix of geodesic distance



MDS Mapping

• Map the vertexes into an m-dimension Euclid space

• The geodesic distance between two points equals to the Euclid distance in the new space

• Obtain the “signature surface”



Matching

• What we have done:  

• matching nonrigid surface → matching rigid surface

• Let 𝑀𝑀𝑖𝑖 be a vector of the first few moments of the surface 𝑆𝑆𝑖𝑖 , then the 

moments-distance matrix, 𝐷𝐷𝑀𝑀, is defined as 

• 𝐷𝐷𝑀𝑀 𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑖𝑖 −𝑀𝑀𝑗𝑗 2

2



Matching

• Now 𝐷𝐷𝑀𝑀 describe the pairwise dissimilarity between surfaces

• Apply the MDS again!

• Each surface → a point in 3-dimension Euclid space

• Apply K-means, K-nearest Neighbor



Results







• Apply moment-based 

clustering on the original 

surface…



• Apply moment-based 

clustering on the original 

surface…



Electors Voting for Fast 
Automatic Shape 
Correspondence




Challenges

• Semantically similar but possibly geometrically very different

• Finding an exact subgraph isomorphism is an NP-complete 

problem



Electors Selection

• Spatial Configuration

• Alleviate the influence of different poses by performing a spatial embedding 

using MDS



Electors Selection

• Pruning 1：Node-Centricity

• is the geodesic distance between 𝑝𝑝 and 𝑝𝑝𝑖𝑖 along skeletal paths. Larger 

values of 𝑐𝑐𝑝𝑝means p is further away from the center of the shape.

• Reject (𝑝𝑝𝑘𝑘 ,𝑞𝑞𝑘𝑘) if their centricity difference is larger than a threshold



Electors Selection

• Pruning 2：Path-Length and Path-Radius

• We reject (𝑝𝑝𝑘𝑘,𝑞𝑞𝑘𝑘) if either one of the following is true

• 𝑔𝑔𝑔𝑔𝑔𝑔( � , �) and 𝑟𝑟𝑟𝑟𝑟𝑟( � , �) are the geodesic distance and the average path radius of two 

feature nodes along skeletal paths.

• normalize to range [0, 1] ，size invariant

• pose invariant



Electors Selection

• Pruning 3: Topology Consistency

• To maintain similar local topological structures we reject (𝑝𝑝𝑘𝑘 ,𝑞𝑞𝑘𝑘).



Voting Process

• 𝑠𝑠𝑖𝑖𝑖𝑖 is the total occurrences of the pair 𝑝𝑝𝑖𝑖 ,𝑞𝑞𝑗𝑗 in all electors

• a higher score has a higher probability of being a correct matched feature 

pair



Form the Final Correspondence

• All the feature pairs are first sorted by their scores, and the pair (𝑝𝑝𝑖𝑖 , 𝑞𝑞𝑗𝑗)with 

the highest score is iteratively added to Ω∗ satisfying the following conditions:



Results





Thank you!

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