Dimensionality Reduction
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Multidimensional scaling



Multidimensional Scaling, MDS

* MDS is a data analysis method which simplifies the research objects of multidimensional
space to low-dimensional space for positioning, analysis and classification, while retaining

the original relationship between objects.

* Applications: market research, stock market analysis, data compression--
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Processing of higher-dimensional surfaces

* A two dimensional surface in three dimensional space is transformed into a two dimensional
plane, and the Euclidean distance between the planar vertices is approximately the same as

that of the surface's geodesic.

2
» Convert a matrix Azxy to Ay, hope Vi,j € [1,N],d(A_;, A_;) = (A_; — A";)", where

d(a, b) is the geodesic distance between points a and b on the original surface.

Original.



Concrete iImplementation

* First, we need to calculate the geodesic distance between two selected points of a given

surface, which is a conditional extremum problem.

e Find acurve L underG(x,y,z) =0:. L = f;}l\/l + y'2 + z'2dx that minimizes the

y =y(x)

Z:Z(x),(xOSxle)

equation I’ = {

* Fast marching algorithm similar to Dijkstra
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However, the solution of the above equation is relatively complex. In practice, we adopt another Fast marching algorithm similar to Dijkstra, and the main idea is that the derivative of T with respect to length s is always 1 as for the distance T on a straight line. So let's say for each of these little triangles that the T function on the plane, approximately the initial point is infinity on the plane, then the gradient of T is also 1, and the direction is constant.



The Fast marching algorithm calculates the distance T (b) from point b to origin

a .

Init: add a to the determined set V(initially empty), T(a) = 0, add the nearest

point a; to V, and T (a,) is the length of the edge (a, a,).

Step 1: select the point v3 that forms a triangle with two points in V and vs is

not in V, calculate its T(v3) as shown in the right figure, and add all this v3 to

the minimum heap to be selected (update the T value if vz already exists).

Step 2: If the heap Is empty, the algorithm ends; otherwise, transfer the heap

top v element to V, and T (v) is the record T in the heap.

Step 3. go to Step 1.



Concrete iImplementation

* Now we have the matrix E: E;; = dizj composed of the geodesic distance d;; =
d(x;, xj) between points. Then turn the question into:

e X = {xq1,x5,...,Xp}is an n X g matrix, n is the sample number, q is the data dimension,

where each x; is a row of the matrix X. But we only know the distance between two data, in

terms of the matrix E
m m

E;; = dl-zj = Z(xia — xja)z JE=cl"+ 1c" — 2XX', ¢;= z x2

a=1 a=1

* Find the method of dimensionality reduction to minimize the change of each distance.
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and we can raise the dimension of the vector in the original three-dimensional space to make the Euclidean distance in the high-dimensional space equal to d, and it is easy to know that it can be raised to N dimension at most. 


PCA & Kernel

PCA



Linear dimensionality reduction - PCA
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Can we reduce the amount of calculation?

* [f the dimension Is too high, we may face trouble

decomposing S =YY = VAVT -
 And If we have d > n, then we can apply a trick:

* And this trick Is really important:



Limitations of PCA — Linearity




Non-linear methods

Leading k

Input data Matrix A .
eigenvectors

| k-D spectral
— = embedding




Kernel PCA — kernel function

e Kernel: ®: R4 — Ra,xi — O (x;)

* ® does not need to be explicitly computed, only the dot product

(@(x;), @(x;)) is needed and applied.

* Knxn = Kij = K(x;,x))(1 < i,j <n)



Kernel PCA — center the data

_q)(xl)f_
o X(b = .
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nxd

()7
* Yet, PCA operates on centered data.

* SO an operator comes to rescue: | = Iyxn — 1,

* Yo = JXo is centered.©



Kernel PCA — apply the trick

Yo =JXe > K=K—-1,K—K1, +1,K1,
* So now we have K = Y4 Y4, but we need the eigenvalues and

eigenvectors of § = Y4 Y.

* And the trick we emphasized before can be applied.

« QOO



Some useful kernels

* K(xp, %) =

p
. (xl- * X+ 1)
. e_ﬁ(xi_xf)2
. oV (xi—x))’

e tanh(nx; - x; + v)

polynomial kernel

Gaussian kernel

RBF kernel
sigmold kernel



Are these kernels really inner product?
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Where, ¢ (x) = e 202(1, Fx, Ex‘,...)




RBF kernel
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RBF kernel

* Gaussian kernel Is used most commonly

* The effect of the parameter gamma

RBF SVM parameters{

This example illustrates the effect of the parameters gamma and c of the Radial Basis Function (RBF) kernel SVM.

Intuitively, the gamma parameter defines how far the influence of a single training example reaches, with low values meaning
‘far’ and high values meaning ‘close’. The gamma parameters can be seen as the inverse of the radius of influence of samples
selected by the model as support vectors.

e from sklearn document



General case

* Theorem (Mercer’s theorem, simplified)

» Suppose K(x,y) € L?(R% x R%) is a positive definite kernel. Then,
there exists a sequence of functions {@;(x)};2 such that K(x,y) =

>2 . 0;(x)p;(y), with convergence in the L* norm.



Kernel function maps

* Map surfaces to functions with kernel trick
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Getting back: -



* [n order to conduct PCA decomposition, it Is necessary to mean X to zero. More generally,

the new origin is set as the weighted average of samples:

X;=X-1¢
= (I-1w)X s’ = w'X, where Y ", w; = 1, and, for every i, w; > 0
=Py X

1 1
* \When mean zero, take W:EI Py = I T i
T

B = —4J(l'+ 1¢ = 2XX')J

JX(JX)=B= — %JEJ
= =110 -1ocs + Ix X

2
=JXX'J

* The result of inner product can be calculated by E, that is, Kernel PCA method can be used



* B is the inner product matrix in Kernel PCA, and the aforementioned method can be used

for it. Let A;be the it" eigenvalue of B, and v;be the it" row eigenvector, i.e.

U

= [v; ',vz',...,un‘]/\[

: } =0AN(0 A Is eigenvalue diagonal matrix
n

* Then the column vectors lined up with the coordinate values of each X vector in

A —~
X; = \/_ \/_Q AQ'v;' Al (Xl-)j is the it coordinate value of the jt*data
;]

A A A
I:Xl ,szm:l — [\//11 Ul ', \/4202'--- m Um l— Q Am

* |In specific problems, a small number of data points are generally selected for dimensionality

reduction, and the remaining data points are mapped by the difference method



* Interpolation method: the position of (t, s) in the dimension reduction plane is determined

according to the proportion of four points in (v, u) plane:




* The result obtained by flattening the face surface in 3d
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e Texture mapping based on the correspondence between plane and surface
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OBB methoa
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Bounding boxes are widely used in collision detection. Because the bounding box is usually a regular object, it is more efficient and simpler to use it instead of the object itself.



Classification of bounding boxes

AABB OBB

The AABB bounding box is aligned with the axis and is easy to generate, but it does not rotate with
the object and does not perform well for more accurate collision detection. OBB bounding box is

always generates a minimum rectangular bounding box along the principal component direction of

the object, which can be rotated with the object for more accurate detection.



Calculating process
cov(X;, X;) = E[(X; — i) (X — p;)]

- cov(x,x) cov(z,y) cov(z,z) |
covariance matrix A = | cov(x.y) covly.y) covly.z)
cov(x,z) covly,z) cov(z, z)

* The covariance matrix is a real symmetric matrix, so it can be diagonalized.

* The eigenvectors of the covariance matrix represent the direction of the OBB
bounding box.

* The OBB bounding box axes should follow the direction of the eigenvector

corresponding to the maximum eigenvalue.



e (37,17), (41,38), (47, 209), (5.2, 2.8), (6.0, 40), (6.3, 3.6), (9.7, 6.3), (10.0, 4.9), (11.0, 3.6), (12.5, 6.4)

Step 1. Calculate the covariance matrix

A [ cov(x,r) cov(x,y) ] B [ 9.0836 3.365 ]
y. S T :i—'

cov(x,y) cov(y,y) 3.365  2.016

Step 2. diagonalize A A =

0.928491  0.371355 10.4294 0.0 0.928491 —0.371355
—0.371355 0.928491 0.0 0.670152 0.371355  0.928491

. L , 0.928491 . —0.371355
Step 3. Take the eigenvector as the direction of OBB 1] = 0.371355 | ° Uy = 0.09840]



Two directions of the bounding box 5 0.928491 1 —0.371355
| 0.371355 |7~ 0.928491
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OBRB and collision detection

* Two convex hull polygons do not intersect, iif there is a line (Separating Axis) , their

projections on that line do not intersect.

&
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Separating Axis '




OBRB and collision detection

* To find the separation axis, try only on the sides of two rectangles (four directions in total).

* |n the figure below, 2 is not the split axis and 1 is the split axis
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OBB and collision detection

| T o L| > | (WsAx) o L| + | (HgAy) o L| + | (WgBx) ¢ L| + |(HgBy) ¢ L|

* Try the four values of L, if there is one that satisfies the condition, then there is no

collision.

Ha Ay e B




Non-rigid Surfaces Matching



Task Description

* Shape retrieval
* Shape correspondence

* Different poses of a deformable object

TRV §




Geodesic Distance

* Use geodesic distance to describe the intrinsic structure of the surface.

* Alg. fast marching on triangulated domains: compute the geodesic distance between

n points out of N points in O(nN)
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Triangulation

* Triangulate the surface
* Choose a small subset of vertexes (“far” from each other)
* Voronol sampling

* Obtain an n X n matrix of geodesic distance



MDS Mapping

* Map the vertexes into an m-dimension Euclid space
* The geodesic distance between two points equals to the Euclid distance in the new space

* Obtain the “signature surface”




Matching

 \What we have done:

* matching nonrigid surface — matching rigid surface

e Let M; be a vector of the first few moments of the surface S;, then the

moments-distance matrix, Dy, 1s defined as

2
* [Dylij = “Mi — Mj||2



Matching

* Now Dy, describe the pairwise dissimilarity between surfaces
* Apply the MDS again!
* Each surface — a point in 3-dimension Euclid space

* Apply K-means, K-nearest Neighbor



Results
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* Apply moment-based L L E g

. . 04 IR ﬂ T 5
clustering on the original o wm

surface:- i -, s e




0B

08 ’ o E " LT | e
* Apply moment-based e

clustering on the original

surface:-

-




“lectors Voting for Fast 4 -~/
Automatic Shape > K /K

Correspondence "
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Challenges

e Semantically similar but possibly geometrically very different

* Finding an exact subgraph isomorphism is an NP-complete

problem



Flectors Selection

e Spatial Configuration

* Alleviate the influence of different poses by performing a spatial embedding

using MDS



Flectors Selection

. . |
* Pruning 1 Node-Centricity ~ Cp = Tpy 2. pCP geo(p, pi)
. geo(p, pi) is the geodesic distance between p and p; along skeletal paths. Larger

values of c,means p is further away from the center of the shape.

* Reject (pk, qr) If their centricity difference is larger than a threshold

‘Cpk —Cq, ‘
(Cpk —I_qu ) /2

> EC



Flectors Selection

* Pruning 2. Path-Length and Path-Radius

geo(pi, pj) — 8eo(qr. 4,
* We reject (pg,qx) If either one of the following is true (geo(px: pj) +geolqr,q;)

\rad(py, pj) — rad(qi.q,
(rad(pg.pj) +rad(qg.q;)

5 > &, V(pj.q)) €L,

|
/
|
)/

"-/\._./“-/\_/

5 > &, V(pj.q)) €L,

e geo(-, -)and rad(-, -) are the geodesic distance and the average path radius of two
feature nodes along skeletal paths.
* normalize to range [0,1] , size invariant

* pose invariant



Flectors Selection

* Pruning 3: Topology Consistency

* To maintain similar local topological structures we reject (P, qk).




Voting Process

* s;j Is the total occurrences of the pair (pl-, qj) In all electors

* a higher score has a higher probability of being a correct matched feature
pair

rl

L if (pinq)) € Q.
0 if (pigj) &

sij =3y Pijx, Piji=-
k



Form the Final Correspondence

* All the feature pairs are first sorted by their scores, and the pair (p;, q;)with

the highest score is iteratively added to * satisfying the following conditions:

¢ 1-1 mapping: Neither p; nor ¢; is already in Q™ ;

¢ Topology consistency: Same as the T3 pruning test, i.e.,
the closest junction nodes of p; and ¢; that are already in
Q" must match.









Thank you!
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