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Overview

@ Intro and Basic of Spectral Transform
°
°
°

Spectral Transform March 19, 2019 2/46



Intro
How to understand "Spectral Transform”?

@ Consider Fourier series
+o0o
ag
@ f(x)= 5 + Z.Oakcos(k:x)

@ Infinite dimensional linear space , whose base "vectors” differ in
frequency:[cos(z), cos(2x), . .. ]

@ And the Coordinates under this space determine the specific
f(X):[ao, at, .. ]
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Intro
From Real Space to Discrete Space

@ Consider matrix in discrete space
@ We can find a "matrix base” of n x n matrix space:[M;, Ms ..., M,]

n2

o Mimage = ZakMk
k=1

Linear

B —

combination
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Intro
To understand the "High/Low frequency information”
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Intro
To understand the "High/Low frequency information”
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Intro
How can we utilize "Spectral Transform”?

@ Eg: image compression

o Mcompression = E ay Mj,

@ Drop out some certain a; helps to compress image while keep
most of "feature”
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Intro
Think about that

@ Notice that Myjust depends on n ,it's no need to save the M

n2

@ Before compression: Mjage = Z ar My, so we need to keep n
=1

2

numbers (ax, k € [1,n?%])
t(t<n?)
@ After compression: Meompression = »  axMj we only need to

k=1
keep tnumbers (ax, k € [1,1])
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Intro
Difference between "Spectral Transform” and SVD?

n
® SVD: M =) oiu” ;X define uT,X; as Si(a single-rank matrix)
1=1

n2

@ "Spectral Transform” : M = ZUiMi
=1
@ S; depends on the specific matrix ,while M; is not.
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Intro
Two practical problems we focus on

@ Removing the rough features or noise(fig2)
@ Compression under certain data loss(fig1)
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Prob1—-Removing the rough features

Eg:seahorse

@ The contour is represented as a sequence of 2D points

@I

Figure: A seahorse shape with rough features
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Prob1—-Removing the rough features
Approach:Midpoint-smoothing

. . . 1
@ Midpoint-smoothing:v; = g(vi + vi—1)

dp vint mldpoml.
smoothing /\\ smoothi nL/’\\.

1 time 2 times

Figure: Results after 2 times of midpoint-smoothing

Spectral Transform March 19, 2019 12/46



Prob1—-Removing the rough features

Definition:Laplacian smoothing

@ After 2 times Midpoint-smoothing , define local averaging as
1.1 1 S
v; = 5(5(% +vi—1) + = (v; + vi11)) Which is referred to as

2
Laplacian
_—
smoothing

Laplacian smoothing
(b) Laplacian smoothing.

Figure: Visualization of Laplacian smoothing
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Prob1—-Removing the rough features

Additional Definition: 7D discrete Laplacian

1
@ i(v;) = 5(%’—1 + Vi) — U
@ Called 1D discrete Laplacian

Vi

N ;_1 / /

Vitil

Figure: 1D discrete Laplacian
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Prob1—-Removing the rough features

Subquestions about Laplacian smoothing

@ Why can Laplacian smoothing remove the rough features (or
noise) from the data ?

@ What happens if we apply Laplacian smoothing in the limit ?
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Prob1—-Removing the rough features

Algebraical Formulation—-Signal x

@ Let each vertex-of-"seahorse” v;’s coordinates be [x;, v;]
@ consider Z1 = [z1,x3...,z,]

x coordinates

ol
0 100 200 300 400
Contour vertex indices

(b)

Figure: Visualization of x-coordinates
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Prob1—-Removing the rough features

Algebraical Formulation—-Laplacian smoothing

@ Let S denote the Laplacian smoothing to signal ¥, consider the

matrix of S
. 1 1 1
@ Notice that: S(a:z) = —Ti—1+ -x; + - Ti41

A 2Ty

ST 17

? 19 0o

i3 1 0 0

S = : : : :

11 1

! C1 3

;7 0 0 7 3]

Figure: Matrix of S
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-]
Prob1—-Removing the rough features

Algebraical Formulation—-1D discrete Laplacian operator

@ Let L denote the 1D discrete Laplacian operatorto signal &,
consider the matrix of L

. 1
@ Notice that:d(v;) = 5(%_1 + Vit1) — v

Figure: Matrix of L
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Prob1—-Removing the rough features

Analyze the 1D discrete Laplacian operator

. 1 , .
@ Noticethat S =1 — 5L , Now we consider eigenvalue:[A;, Az. . .]
and eigenvectors:fej,es...] of L
@ Then signal x can be denoted by [e, €5 .. .]

| 1 |z
X=Z:Eieﬁ;= e, e ... e, | = Ex.
i=1 | 1]
:r'n

Figure: Express x as a linear combination of the eigenvectors
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Prob1—-Removing the rough features

We call this a spectral transform

@ convert x to z under the base of eigenvectors is called spectral
transform

@ Why is it special? You just express x form different base vectors.
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Prob1—-Removing the rough features

Why do we call this a spectral transform?

@ Then the magic happens!
@ Ps: ¢; is sorted by "frequency”

Eigenvalus 1 0.000000 Exgenvalus % 0.000123 Eiganvalus . -0.000123 Eiganvalue 2 ~0.000491
o o1 01 o
0.8 005 0.05]
of of o| of

-0.05| 0.5} -00s| -005)

J'Y) I S S [ S —
0 20 @00 400 IR w0 200 0 A 0 20 a0 40
Eigenvaue 1 -0.000491 Exgenvalue % 0.001105 Eigenvalue . 0001105 Eigenvaius A ~0.001963

o o1 01 o

005, 0.05] 00s| 0.5}

o of of of

~00s] 0.0} ~a0s, 005

JEP) IN——— ) IS ) S AP S —
0 2w a0 40 CEEEEEEE: 00 200 0 & 0 20 a0 40

Figure: Magic eigenvectors of matrix L
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Prob1—-Removing the rough features

Look back on Fourier series and High/Low frequency information

n
xTr = E %iei
=1

“+oo
@ f(z)= % + Zakcos(lm)

e; ~ cos(kx)
Ps: ¢; is sorted by "frequency”

fifvak
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Prob1—-Removing the rough features

Back to Prob:How to remove the rough features?

@ Lemmat: A\ > >---> )\,
@ Lemma2:0Only \; =0

1 m n 1 m 3
x(m = SMx = (I iL) X = Z (I— §L> €; Ty
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Prob1—-Removing the rough features

Back to Prob:How to remove the rough features?

1 .
@ First row: filter plots, f(\) = (1 — 5)\)mwr[h m = 1,5,10,50

@ Second row: corresponding results of Laplacian smoothing on the

os) o o o
o6l ogf o) o
o4 o4 0.4) o4
02} 04| 02| 03]
05 1 s T S T ] o5 T 15 2 (T R TS

Figure:
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Prob1—-Removing the rough features
Back to Prob:Apply Laplacian smoothing to the limit?

@ Lemmat: i > X > - >\,
@ Lemma2:Only \; =0

@ Lemmagd:); € [0, 2]

@ Lemma4;; = [L, i, L )F

vn
1 m L 1 L
X(-m):Smx: (IéL) X:Z(I—§L> e; I

3
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Prob1—-Removing the rough features
Back to Prob:Apply Laplacian smoothing to the limit?

@ If \; #0then (1 — 1)\i)m =0

@ S0z = 171 = [T, ZLEI, Zazl,...

@ Which means all z; will converge to one pomt.centrOId
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Prob2—-Compression under certain data loss

Based on former Analysis

!
@ Consider 2% = Z Ziei, k < n as compression of signal #
=1

o While z =) " Tje;
=1
@ quantify the information loss by measuring the 12 error :

n
E 51‘61‘

i=k+1

n

— E 72
= T;

1=k+1

|7 — 2 || =
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Prob2—-Compression under certain data loss

Based on former Analysis

NDIJ88 8
DD+ EE

k=5 k=10 k=20 k=230 k~—n Original

Figure: Shape reconstruction via Laplacian-based spectral analysis.
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Prob2—-Compression under certain data loss

Based on former Analysis

@ To quantify the performance of this kind of compression, consider
plotting 7 ’s coefficients

H

.z ¥ 8

Spectral transform coefficients for x

Spectral transform coefficients for x

£ 8 8 8

g

60 70

R o 40 50
Eigenvalue indices Eigenvalue indices

Figure: Plot of spectral transform coefficients for the x component of a
contour.
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Prob2—-Compression under certain data loss

Based on former Analysis

@ A signal whose energies are concentrated in the low-frequency
end can be effectively compressed at a high compression rate

_ 3 & £

Spectral transform coefficients for x

g 8 8 8

Spectral transform coefficients for x

o ame w0 0 20 60 70

R
Eigenvalue indices Eigenvalue indices

Figure: Notice the low-frequency concentration of x signal
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Comparison between SVD and Spectral Transform

In the field of image compression

@ Totally same as spectral transform , SVD can do imgae
k

compression : M = Z‘”Mi’ k<n

=1
HRERE: 1 AHREHE: 2 ﬁ%fﬁ!&@ 3 FREHE: 4
| | | |
FREKRE: 5 %;{EQ&EI 10 #FRAKE: 15 FRERHE: 20
ERENE: 25 E?;{E&E 30 _ BREXE: 3% _ BREXA: 40

Figure: Image compression by SVD

Spectral Transform March 19, 2019 31/46



-]
Comparison between SVD and Spectral Transform

To quantify the efficiency of two method

k
e SVD: M = Z o:M;, k < n , so its compression rate is
=1
LT YA o
R(k) k;(2n+1)( phiAi)
k
@ Spectral Transform: M = Z o;M;, k < n,so its compression rate
=1
2
. n
k) —
is R(k) ?

@ ps:M; is 2D-Spectral-Transform’s base matrix ,in fact is should be
written as M; ; = eje]
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|
The Discrete Laplacian Operator

from continue to discrete

@ the continue Laplacian is easier to understand
@ in 3D Cartesian coordinates:

0*f  0*f 0°f
2 _U.Uf —
Af=Vi[=V-VJ ox?2  0y? 022

Example: V2V = — 2
€0

@ in 1D case, the Laplacian operator is just the second order
derivative operator
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|
The Discrete Laplacian Operator

from continue to discrete

@ the continue Laplacian is easier to understand
@ in 3D Cartesian coording%efs: o o
_U2f_ . _
Af=Vi[=V-VJ ox?2  0y? 022
p

Example: V2V = -
€0

@ in 1D case, the Laplacian operator is just the second order
derivative operator
@ discrete case:

V2= (fixr — fi) = (fi = fim1) = fix1 + fic1 — 2fi = —2Lf;
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The Discrete Laplacian Operator

the Eigenvalue and Eigenvector

@ solving euqgation:

Lv=Mv 1 17
1 = -
2 2
where L= | 2 o is a Symmetric Matrices
1
— 0 ... 1
L 2

1

Q(fzel + fit1) = Av;

@ in equivalent, Lv; = v; —
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|
The Discrete Laplacian Operator

the Eigenvalue and Eigenvector

@ solving euqgation:

Lv=Xv 1
@ in equivalent, Lv; = v; — i(fi_l + fi+1) = \y;
@ Periodic boundary conditions:

V0 = Un, Un+1 = V1

Figure: Periodic boundary

Spectral Transform March 19, 2019 34/46



The Discrete Laplacian Operator

the Eigenvalue and Eigenvector

@ solving euqation:
Lv=Xv

. . 1
@ 1IN equwalent, Lv; =v; — i(fi_l + fi+1) = \v;

@ Periodic boundary conditions:
V) = VUp, Unt1 = U1

° tg;foontime case:
Tz Af, where f is a periodic function
= f=cosV—A\zor f=sinv—-\z
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The Discrete Laplacian Operator

the Eigenvalue and Eigenvector

@ solving euqation:
Lv=Xv

. . 1
@ 1IN equwalent, Lv; =v; — i(fi_l + fi+1) = \v;

@ Periodic boundary conditions:
Vo = Upn, Up4+1 = V1
° E?Qe continue case:
d—x‘é = \f, where f is a periodic function
= f=cosV—A\zor f=sinv—-\z
@ the eigenvector might be a trigonometric vector:
v = [1,w§, ...,wT(anl)k]T

where w = ¢! to fit the periodic boundary condition
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The Discrete Laplacian Operator

the Eigenvalue and Eignvector
@ Examit!:

(Lv)j = Z Ljivi

=vj = 5 (i1 +vj41)
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The Discrete Laplacian Operator

the Eigenvalue and Eignvector

@ Examit!:

(Lv)j = Z Ljivi
1
= vj = 5(vj-1+vj41)
. 1 _
= Wl — L+ )]
2rk
= v;j(1 — cos 7)

@ no need to check for boundary situation
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The Discrete Laplacian Operator

the Eigenvalue and Eignvector

@ Examit!:

(Lv)j = ZLﬁvi

1
= vj = 5(vj-1+vj41)

. 1 _
— Il L+
2rk
= v;j(1 — cos 7)

@ no need to check for boundary situation
21k
@ )\, =1—cos—
n

notice that A\, = \,,_x, which means there are only g eigenvalues
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The Discrete Laplacian Operator

the Eigenvalue and Eigenvector

@ Why?
1 1
wh wy®
v = : s U = Up_k = ) are both the
wgn—l)k w;(n—l)k

eigenvalue \;’s eigenvectors, the dimension of eigenspace is 2.
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|
The Discrete Laplacian Operator

the Eigenvalue and Eigenvector

@ Why?
1 1
wh wy,*
v = s Uk = Upf = . are both the
wgn—l)k w;(n—l)k

eigenvalue \;’s eigenvectors, the dimension of eigenspace is 2.
@ eigenvector in real space:

T
1 2rk 2nk(n — 1
a = =(vp +v_g) = [1, cos r ... COS W(n)}
2 n n
T
1 2wk 2rk(n — 1
@:.(vk—v_w:[l, n 2 <”>]
21 n n
— =
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Discrete Fourier transform

@ Fourier transform is another important transformation concerning
frequency

@ using the vector vy, defined as above:
v = [l,wﬁ, ...,wf]”_l)k]T

@ Define: F' = [vg, v1, ..., Un—1]

1
we have F~! = E[Uo,v_l, ey U_(n_l)]T

Spectral Transform March 19,2019  37/46



Discrete Fourier transform

@ Fourier transform is another important transformation concerning
frequency
@ using the vector vy, defined as above:
Uk = [17(’07’27 7w7(”Ln_1)k]T
@ Define: F' = [vg, v1, ..., Un—1]
1
we have 7! = E[vo, V1, eeny U_(n_l)]T
@ the DFT is defined as:

- _ 1 1
;= (F lx)j = EZxk(v])k =D ke "
k k

@ r=Fz= chjvj, from low frequency to high frequency
J
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|
Compare between LT and DFT

@ We can decompose the matrix L using F:
L= F 'diag(\o,...; \n_1)F
80 Lz = F~'diag(\g, ..., \n_1)Fz, to change the proportion of
coefficient on every frequency

@ the laplacian transform is a composition of Fourier transform and
coefficient adjustment
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|
Spectral analysis on meshes

@ A triangle mesh with n vertices is represented as M = (G, P),
where G = (V, £) models the mesh graph, with V denoting the set
of mesh vertices and £ c V x V the set of edges, and P € R"*3
represents the geometry of the mesh, given by a matrix of 3D
vertex coordinates.

@ meshes are more complicated than 1-D situation. Because it has
more complex relation between vertices.
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Spectral analysis on meshes

@ IV is the adjacency matrix

W, = {1 if (i,j) € €

0 otherwise.

@ D is a diagonal matrix

di=\N@)|  ifi=j
Di,j = {0

otherwise.

@ N (i) is the set of immediate neighbor vertices of i
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Spectral analysis on meshes

Figure: Laplacian coordinate
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Spectral analysis on meshes

@ Similarly, we define Laplacian coordinate as:
1
5(.%2) =T — T Z .CUJ'
NG5,

@ we define our mesh Laplacian matrix T" as

T=I1I-D'Ww
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Spectral mesh transform

@ T is the same as 1D case for L that we saw earlier. Let E be the
matrix whose columns are the eigenvectors.

@ Denote by ey, - - - , e, the normalized eigenvectors of T,
corresponding to eigenvalues \; < --- < A\, and let E be the
matrix whose columns are the eigenvectors.

k
IL‘(k) = Z :I:Z-ei
=1
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Spectral mesh transform

x%%‘h

=3. (g) k= 5. (f) k= 10. k= 50.

badadala

(d) k& = 100. (c) k = 200. (b) k= 300. (a) Original.

Figure: Laplacian Result
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Spectral mesh transform

Also colors...

geeeee

1 =250 =360

Figure: Laplacian Result
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Advantages

@ T is depended on adjacency matrix.
@ Different Laplacian operator performs well in different surface.(e.g.
Lcot)

@ Laplacian operator may calculate slowly. But there are some
method to spped up this process, e.g., via spectral shift and invert
[VLO8],algebraic multi-grid methods, or settling for approximated
results [ZvKD10]
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