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Overview

Intro and Basic of Spectral Transform
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Intro
How to understand ”Spectral Transform”?

Consider Fourier series

f(x) =
a0
2

+

+∞∑
−∞

akcos(kx)

Infinite dimensional linear space , whose base ”vectors” differ in
frequency:[cos(x), cos(2x), . . . ]

And the Coordinates under this space determine the specific
f(x):[a0, a1, . . . ]
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Intro
From Real Space to Discrete Space

Consider matrix in discrete space
We can find a ”matrix base” of n∗n matrix space:[M1,M2 . . . ,Mn2 ]

Mimage =

n2∑
k=1

akMk
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Intro
To understand the ”High/Low frequency information”
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Intro
How can we utilize ”Spectral Transform”?

Eg: image compression

Mcompression =

t(t<n2)∑
k=1

akMk

Drop out some certain ak helps to compress image while keep
most of ”feature”

Group 4 Spectral Transform March 19, 2019 7 / 46



Intro
Think about that

Notice that Mkjust depends on n ,it’s no need to save the Mk

Before compression: Mimage =

n2∑
k=1

akMk so we need to keep n2

numbers (ak, k ∈ [1, n2])

After compression: Mcompression =

t(t<n2)∑
k=1

akMk we only need to

keep tnumbers (ak, k ∈ [1, t])
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Intro
Difference between ”Spectral Transform” and SVD?

SVD: M =

n∑
i=1

σi
~µT i
~λi define ~µT i

~λi as Si(a single-rank matrix)

”Spectral Transform” : M =
n2∑
i=1

σiMi

Si depends on the specific matrix ,while Mi is not.
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Intro
Two practical problems we focus on

Removing the rough features or noise(fig2)
Compression under certain data loss(fig1)
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Prob1—-Removing the rough features
Eg:seahorse

The contour is represented as a sequence of 2D points

Figure: A seahorse shape with rough features
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Prob1—-Removing the rough features
Approach:Midpoint-smoothing

Midpoint-smoothing:vi =
1

2
(vi + vi−1)

Figure: Results after 2 times of midpoint-smoothing
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Prob1—-Removing the rough features
Definition:Laplacian smoothing

After 2 times Midpoint-smoothing , define local averaging as

vi =
1

2
(
1

2
(vi + vi−1) +

1

2
(vi + vi+1)) which is referred to as

Laplacian smoothing

Figure: Visualization of Laplacian smoothing
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Prob1—-Removing the rough features
Additional Definition:1D discrete Laplacian

δ(vi) =
1

2
(vi−1 + vi+1)− vi

Called 1D discrete Laplacian

Figure: 1D discrete Laplacian
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Prob1—-Removing the rough features
Subquestions about Laplacian smoothing

Why can Laplacian smoothing remove the rough features (or
noise) from the data ?
What happens if we apply Laplacian smoothing in the limit ?
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Prob1—-Removing the rough features
Algebraical Formulation—-Signal x

Let each vertex-of-”seahorse” vi’s coordinates be [xi, yi]

consider ~xT = [x1, x2 . . . , xn]

Figure: Visualization of x-coordinates
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Prob1—-Removing the rough features
Algebraical Formulation—-Laplacian smoothing

Let S denote the Laplacian smoothing to signal ~x , consider the
matrix of S

Notice that: S(xi) =
1

4
xi−1 +

1

2
xi +

1

4
xi+1

Figure: Matrix of S
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Prob1—-Removing the rough features
Algebraical Formulation—-1D discrete Laplacian operator

Let L denote the 1D discrete Laplacian operator to signal ~x ,
consider the matrix of L

Notice that:δ(vi) =
1

2
(vi−1 + vi+1)− vi

Figure: Matrix of L
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Prob1—-Removing the rough features
Analyze the 1D discrete Laplacian operator

Notice that S = I − 1

2
L , now we consider eigenvalue:[λ1, λ2 . . . ]

and eigenvectors:[e1, e2 . . . ] of L
Then signal x can be denoted by [e1, e2 . . . ]

Figure: Express x as a linear combination of the eigenvectors
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Prob1—-Removing the rough features
We call this a spectral transform

convert x to x̃ under the base of eigenvectors is called spectral
transform
Why is it special? You just express x form different base vectors.
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Prob1—-Removing the rough features
Why do we call this a spectral transform?

Then the magic happens!
Ps: ei is sorted by ”frequency”

Figure: Magic eigenvectors of matrix L

Group 4 Spectral Transform March 19, 2019 21 / 46



Prob1—-Removing the rough features
Look back on Fourier series and High/Low frequency information

x =

n∑
i=1

x̃iei

f(x) =
a0
2

+

+∞∑
−∞

akcos(kx)

ei ∼ cos(kx)

Ps: ei is sorted by ”frequency”
x̃i ∼ ak
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Prob1—-Removing the rough features
Back to Prob:How to remove the rough features?

Lemma1:λ1 ≥ λ2 ≥ · · · ≥ λn
Lemma2:Only λi = 0
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Prob1—-Removing the rough features
Back to Prob:How to remove the rough features?

First row: filter plots, f(λ) = (1− 1

2
λ)mwith m = 1, 5, 10, 50

Second row: corresponding results of Laplacian smoothing on the
seahorse

Figure:
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Prob1—-Removing the rough features
Back to Prob:Apply Laplacian smoothing to the limit?

Lemma1:λ1 ≥ λ2 ≥ · · · ≥ λn
Lemma2:Only λ1 = 0

Lemma3:λi ∈ [0, 2]

Lemma4:i = [
1√
n
,

1√
n
, . . . ]T
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Prob1—-Removing the rough features
Back to Prob:Apply Laplacian smoothing to the limit?

If λi 6= 0 then (1− 1

2
λi)

m ⇒ 0

So x<m> ⇒ e1x̃1 = [x, x, . . . ] = [
1

n

n∑
i

xi,
1

n

n∑
i

xi, . . . ]

Which means all xi will converge to one point:centroid
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Prob2—-Compression under certain data loss
Based on former Analysis

Consider x(k) =

k∑
i=1

x̃iei, k < n as compression of signal ~x

While x =

n∑
i=1

x̃iei

quantify the information loss by measuring the l2 error :∥∥~x− ~x(k)∥∥ =

∥∥∥∥∥
n∑

i=k+1

x̃iei

∥∥∥∥∥ =

√√√√ n∑
i=k+1

x̃2i
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Prob2—-Compression under certain data loss
Based on former Analysis

Figure: Shape reconstruction via Laplacian-based spectral analysis.
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Prob2—-Compression under certain data loss
Based on former Analysis

To quantify the performance of this kind of compression, consider
plotting x̃ ’s coefficients

Figure: Plot of spectral transform coefficients for the x component of a
contour.
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Prob2—-Compression under certain data loss
Based on former Analysis

A signal whose energies are concentrated in the low-frequency
end can be effectively compressed at a high compression rate

Figure: Notice the low-frequency concentration of x signal
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Comparison between SVD and Spectral Transform
In the field of image compression

Totally same as spectral transform , SVD can do imgae

compression : M =

k∑
i=1

σiMi, k < n

Figure: Image compression by SVD
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Comparison between SVD and Spectral Transform
To quantify the efficiency of two method

SVD: M =

k∑
i=1

σiMi, k < n , so its compression rate is

R(k) =
n2

k(2n+ 1)
(Mi = ~µT i

~λi)

Spectral Transform: M =

k∑
i=1

σ̃iMi, k < n , so its compression rate

is R(k) =
n2

k
ps:Mi is 2D-Spectral-Transform’s base matrix ,in fact is should be
written as Mi,j = eje

T
i

Figure: Example of 2D-Spectral-Transform’s base matrix
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The Discrete Laplacian Operator
from continue to discrete

the continue Laplacian is easier to understand
in 3D Cartesian coordinates:

∆f = ∇2f = ∇ · ∇f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

Example: ∇2V = − ρ

ε0
in 1D case, the Laplacian operator is just the second order
derivative operator

discrete case:
∇2fi = (fi+1 − fi)− (fi − fi−1) = fi+1 + fi−1 − 2fi = −2Lfi
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The Discrete Laplacian Operator
the Eigenvalue and Eigenvector

solving euqation:
Lv = λv

where L =



1 −1

2
. . . −1

2

−1

2
1 . . . 0

... . . .
...

−1

2
0 . . . 1


is a Symmetric Matrices

in equivalent, Lvi = vi −
1

2
(fi−1 + fi+1) = λvi

Periodic boundary conditions:
v0 = vn, vn+1 = v1
the continue case:
d2f

dx2
= λf , where f is a periodic function

⇒ f = cos
√
−λx or f = sin

√
−λx

the eigenvector might be a trigonometric vector:
vk = [1, ωk

n, ..., ω
(n−1)k
n ]T

where ω = ei
2π
n to fit the periodic boundary condition

Group 4 Spectral Transform March 19, 2019 34 / 46



The Discrete Laplacian Operator
the Eigenvalue and Eigenvector

solving euqation:
Lv = λv

in equivalent, Lvi = vi −
1

2
(fi−1 + fi+1) = λvi

Periodic boundary conditions:
v0 = vn, vn+1 = v1

Figure: Periodic boundary

the continue case:
d2f

dx2
= λf , where f is a periodic function

⇒ f = cos
√
−λx or f = sin

√
−λx

the eigenvector might be a trigonometric vector:
vk = [1, ωk

n, ..., ω
(n−1)k
n ]T

where ω = ei
2π
n to fit the periodic boundary condition

Group 4 Spectral Transform March 19, 2019 34 / 46



The Discrete Laplacian Operator
the Eigenvalue and Eigenvector

solving euqation:
Lv = λv

in equivalent, Lvi = vi −
1

2
(fi−1 + fi+1) = λvi

Periodic boundary conditions:
v0 = vn, vn+1 = v1

the continue case:
d2f

dx2
= λf , where f is a periodic function

⇒ f = cos
√
−λx or f = sin

√
−λx

the eigenvector might be a trigonometric vector:
vk = [1, ωk

n, ..., ω
(n−1)k
n ]T

where ω = ei
2π
n to fit the periodic boundary condition

Group 4 Spectral Transform March 19, 2019 34 / 46



The Discrete Laplacian Operator
the Eigenvalue and Eigenvector

solving euqation:
Lv = λv

in equivalent, Lvi = vi −
1

2
(fi−1 + fi+1) = λvi

Periodic boundary conditions:
v0 = vn, vn+1 = v1

the continue case:
d2f

dx2
= λf , where f is a periodic function

⇒ f = cos
√
−λx or f = sin

√
−λx

the eigenvector might be a trigonometric vector:
vk = [1, ωk

n, ..., ω
(n−1)k
n ]T

where ω = ei
2π
n to fit the periodic boundary condition

Group 4 Spectral Transform March 19, 2019 34 / 46



The Discrete Laplacian Operator
the Eigenvalue and Eignvector

Exam it!:

(Lv)j =
∑

Ljivi

= vj −
1

2
(vj−1 + vj+1)

= ωkj
n [1− 1

2
(ωk

n + ω−kn )]

= vj(1− cos
2πk

n
)

(1)

no need to check for boundary situation

λk = 1− cos
2πk

n
notice that λk = λn−k, which means there are only

n

2
eigenvalues
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The Discrete Laplacian Operator
the Eigenvalue and Eigenvector

Why?

vk =


1

ωk
n
...

ω(n−1)k
n

, v−k = vn−k =


1

ω−kn
...

ω−(n−1)kn

 are both the

eigenvalue λk’s eigenvectors, the dimension of eigenspace is 2.

eigenvector in real space:

αk =
1

2
(vk + v−k) =

[
1, cos

2πk

n
. . . cos

2πk(n− 1)

n

]T
βk =

1

2i
(vk − v−k) =

[
1, sin

2πk

n
. . . sin

2πk(n− 1)

n

]T
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Discrete Fourier transform

Fourier transform is another important transformation concerning
frequency
using the vector vk defined as above:
vk = [1, ωk

n, ..., ω
(n−1)k
n ]T

Define: F = [v0, v1, ..., vn−1]

we have F−1 =
1

n
[v0, v−1, ..., v−(n−1)]

T

the DFT is defined as:
x̃j = (F−1x)j =

1

n

∑
k

xk(vj)k =
1

n

∑
k

xke
i2πjk
n

x = Fx̃ =
∑
j

x̃jvj , from low frequency to high frequency
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Compare between LT and DFT

We can decompose the matrix L using F :
L = F−1diag(λ0, ..., λn−1)F
so Lx = F−1diag(λ0, ..., λn−1)Fx, to change the proportion of
coefficient on every frequency
the laplacian transform is a composition of Fourier transform and
coefficient adjustment
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Spectral analysis on meshes

A triangle mesh with n vertices is represented asM = (G,P),
where G = (V, E) models the mesh graph, with V denoting the set
of mesh vertices and E ⊂ V × V the set of edges, and P ∈ Rn×3

represents the geometry of the mesh, given by a matrix of 3D
vertex coordinates.
meshes are more complicated than 1-D situation. Because it has
more complex relation between vertices.
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Spectral analysis on meshes

W is the adjacency matrix

Wi,j =

{
1 if (i, j) ∈ E
0 otherwise.

D is a diagonal matrix

Di,j =

{
di = |N (i)| if i = j

0 otherwise.

N (i) is the set of immediate neighbor vertices of i
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Spectral analysis on meshes

Figure: Laplacian coordinate
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Spectral analysis on meshes

Similarly, we define Laplacian coordinate as:

δ(xi) = xi −
1

|N (i)|
∑

j∈N (i)

xj

we define our mesh Laplacian matrix T as

T = I −D−1W
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Spectral mesh transform

T is the same as 1D case for L that we saw earlier. Let E be the
matrix whose columns are the eigenvectors.
Denote by e1, · · · , en the normalized eigenvectors of T ,
corresponding to eigenvalues λ1 ≤ · · · ≤ λn, and let E be the
matrix whose columns are the eigenvectors.

x(k) =

k∑
i=1

x̃iei
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Spectral mesh transform

Figure: Laplacian Result
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Spectral mesh transform

Also colors...

Figure: Laplacian Result
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Advantages

T is depended on adjacency matrix.
Different Laplacian operator performs well in different surface.(e.g.
Lcot)
Laplacian operator may calculate slowly. But there are some
method to spped up this process, e.g., via spectral shift and invert
[VL08],algebraic multi-grid methods, or settling for approximated
results [ZvKD10]
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