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& Overview:Why LS solution is
important

m The solution is easy to obtain.

In this chapter, we have learned about Least-Squares fitting and
solution. Recall that formulating the optimization using quadratic
or square terms allows us to get a linear system after taking partial
derivatives. The resultant linear system is simply solvable using
basic linear algebra tools.

m From discrete points, we can use it to approximate and obtain
the surface of these points.
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N, S 1.Line fitting

m Can only give meaningful results if the underlying
model from which data is being observed is
indeed a line or close to being linear.

m From a point to the line, there are two kinds of
distances as the following.




: kind of distances and difference

m vertical distance projected distance




When using vertical distance
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When using projected distance
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2.LLS polynomial fitting

Background: if the points come from a parabola, or some other
higher-order function.

The m-th order polynomial function: v = f(z) = X}, axz”

n

Goal: minimize Fla..-an) =S (f@) - ) —Z(Zam —m)

i=1

Solution: by setting f)E(a,n

Example: m=2 y = ZL ﬂa;{fr = ag + a1z + asz?.
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General cases

m |f only the expression f(x) linearly depends on the parameters
a,b,c,..., we can also extract an LS solution using a linar
system. We can also set the partial derivatives to 0:

El{a; b G v) i=23_ At —fﬁhc,..(i?i))g
OE((],: b.f Ciyaiin )/Oa = Z(_Qafabc...(mi)/aa)[yz' - fabc...(mi)] = 03
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OE(a,b.c,...)[0b="Y (=20 fwe..(2:)/Ob)[yi — fabe...(x:)] =0,

1

(3.9)

m f(x) doesn't need to be polynome

Faipe s (€) = Arsin® 4+ dgexp(—2%/0) + A3z’

e, (@) = Acfi(z) + Aefolz) + -+ - + M fr(z) -




R & WD, dSolving linear systems In the
g sense

Background: When in a set of linear equations, the number of
equation is more than the number of unknowns, it's called an
overdetermined system. Each equation contains some noise,
or simply inaccurate observations.

Goal: min |Ax — b||? = min( x'A'Ax — 2x'A'b + b'b).

(Ax —b) =10

Solution: Set the partial derivative of x to 0: A
ATAx = A™D.

Remark: The term (Ax — b) is called the residual vector, the part of

the data that is not explained by the LS solution.

Conclusion: if A has full rank, x = (474)"14™.




4. Weighed approach

m Background: when there are some outliers in the sample
points, the traditional LS solution will be quite skewed.
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m Goal and solution: min E(1) ==} wid(l, pi)*.
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m lterations:  wj+1 = exp(—d(l;,pi)/0)
m This method can handle data with a moderate gsas
outliers.




"5, Local surface fitting to 3D points

m Background: in 3D cases, we need to reconstruct or
approximate the local surface of each point. Once we have a

local surface normal, we have a local reference plane.
y = f(x)

g =]
=]
o
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Firstly, find the local surface normal of each point and obtain
the local reference plane at each point.
p € P, let N;(p) = {qi} ie, |[p—qi <

n be the unit normal to § at p,

n'x + d = 0. the local reference plane




m Goal: min, 4(n'q; + d)? s.t. |[n| =1
m Solution: n is the smallest eigenvector of the covariance matrix
> i(ai—a)(qi —a)". q=)_;qi/|Nr(p)|

m Remark: r should be appropriate. If too small, the fit might be
quite susceptible to noise; If too large, local variations such as

sharp features can get averaged out.

m Secondly, locally fit a polynomial around the point.

z=F(x,y) =az’+ by +cy’ +dz+ey+f.
azi + briyi + ¢y’ + dzy + ey + f = 21, minimize Y, ||z; — F(x:,3i)]2.

axs + brays + cys + dra + eya + f = 22, e 2
minimize Y . wil|lzi — F(xi,yi)l*,

G.:Ii,i + bx,y, + cyﬁ +dz, +eyn+F = 2zp. .’Jt /'?- J/‘ }5?




& b .
L i

AT Expansion: RANSAC
When there are a large proportion of points that are outliers,
weighed approach can't handle either.

Random Sample Consensus can deal with it!

Five steps to realize the algorithm:
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Applications




“Expansion: the relation with SVM

m The key idea of dealing with noise is similar

This leads to the following general optimization problem defining SVMs in the
non-separable case where the parameter €' > 0 determines the trade-off between
margin-maximization (or minimization of |w||*) and the minimization of the slack
penalty »°.", £F:

il

I. z -
min =|w||*+CY £° 4.23)
i 5 Wl y. & (4.23)

i=1

subject to y(w-x;+b)=21-& A £ 20,i€ [1,m],

where € = (£1,....&m )" . The parameter ' is typically determined via n-fold cross-
validation (see section 1.3).
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m Adjust the weight of each item through iterations

m Give the “important” ones more weight and “unimportant
ones” less weight.

ApaBoost(S = ((xr,m) - o (T U )))
; decision
1 fori—1tomdo ; | boundary

Dy(i) & 5

3 fort«—1toT do

hy — base classifier in H with small error €, = Pr,.p, [he(2:) # i

updated
weights

1 1k
ap — 3 log ==

1 = . .
Zy +— 2[e(1 — €))7 & normalization factor
fori—1to mdo
Ll I (1) expl—ore b ()
I),l_+|_(!} z,

9 g vl o hy

£al=]

10 return h = sgn(yg)

Figure 6.1 AdaBoost algorithm for H C {1, +1}",
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Mesh reconstruction

Problem definition

» Definition: construct mesh from a set of point samples

» Abstraction: given a planar graph with arbitrary connectivity and
a sparse set of control points that lies on the surface,
reconstruct the rest of the surface.

Pengcheng Xu | LS Applications: Mesh reconstruction & Skin calculation



Mesh reconstruction

Formal definition

» Mesh graph: a graph whose drawing, embedded in some
Euclidean space R", forms a regular tiling.

» For a given mesh graph G = (V, E), the following defines a
fairness and smoothness condition for vertex v;:

- Z V=0 (1)
(ij)EE
» For 3D meshes, the linear system can be written as the following:
Ix=0,Ly=0,Llz=0 (2)
where L is the Laplacian of the mesh:
1 i=j

Lj={-& (i)€cE (3)

0 otherwise

Pengcheng Xu | LS Applications: Mesh reconstruction & Skin calculation



Mesh reconstruction

Formal definition

» To keep the sharp features of the mesh, consider a (sparse) set
of control points:

Vs = (Xs, Vs, Zs), S € C, where C = {s1,S2,...,5m} 4)

» The system becomes:

Ax=Db (5)
L 1 j=seC
A= Fi = 6
( F )’ / {0 otherwise ©
0 k<n
by = - 7
« {xsm n<k<n+m @

Pengcheng Xu | LS Applications: Mesh reconstruction & Skin calculation



Mesh reconstruction

Solution

» To reconstruct the mesh, find x that minimizes

1AX — b|2 = [[Lx[2 + Y x5 — v§? (8)

seC

in least-squares sense.
» Mesh visualization:
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Figure: Example of graph and corresponding A matrix. Yellow vertices
are control points.

Least-squares Meshes by Sorkine, Cohen-Or, Tel Aviv University
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Mesh reconstruction

Visualization

() (b) (©) (d)

Figure: Camel: 30974 vertices in connectivity graph. (a): 1k control points;
(c): 2k control points.
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Mesh reconstruction

Visualization

Figure: Horse: 19851 vertices in connectivity graph. (a): original graph; (c):
1k control vertices.

Pengcheng Xu | LS Applications: Mesh reconstruction & Skin calculation



Skin calculation

Introduction

» Animating articulated characters such as virtual humans is a
fundamental operation in computer graphics and interactive
applications

» Techniques for rigging character skins by weighting vertices to an
associated skeleton are widely used in video games and the
computer animation industry

Pengcheng Xu | LS Applications: Mesh reconstruction & Skin calculation



Skin calculation

Definitions

» Construct a vertex skinning transform, T = (T;), that
approximates a sequence of input meshes.

» Let the sequence of S meshes have deformed vertex positions
P=(p',p?,...p%), where p' € RN for N vertices. (t: time). Seek
a skinning transformation T! at each sequence step t, that
transforms the undeformed rest pose points, p, to approximate

p':
pl~Tlpt=1...S 9)
Use linear blend skinning, where the transform for vertex i is
T/t = Z Wibﬁ (10)
beB;

Pengcheng Xu | LS Applications: Mesh reconstruction & Skin calculation



Skin calculation

Skin estimation methods

How to estimate which bones can influence each vertex and what the
corresponding vertex weights are, given a mesh sequence and bone
transformations { T}}?
» Estimating bone influences: pick g bones (3 is given) that
influences vertex i via LS:

wi= Y |pl-Tipil3.b=1...B (11)
t=1...S

» Estimating vertex weights: given vertex-bone influence sets {5;},
the associated weights are computed using (constrained) LS:

> (Tspyws =pl,t=1...S (12)

beB;

of the form AOw() = b() along with the affine constraint:
Z Wip = 1 (13)
b

Not directly solving this due to potential “overfitting”



Weight overfitting problem

Direct solution of constrained LS leads to large positive and negative
values, which is suboptimal; use the augmented system instead:

cAD o [ cbO)
{1...1]‘” ( 1 ) (14)

of the form ADw() = b, where ¢ = Hbgi”\Iz is a scaling factor, and the
ones in the last rows are for the affine constraint.

Pengcheng Xu | LS Applications: Mesh reconstruction & Skin calculation



Weight overfitting problem

Solving the augmented system

» Truncated Singular Value Decomposition (TSVD): Truncate
singular values at 10~5||A()||, to avoid overfitting

» Non-Negative Least Squares (NNLS, variant of constrained LS):

Solve Aw() = b() subjects to w) > 0. (15)

Skinning Mesh Animations by James, Twigg, Carnegie Mellon Univ.

Pengcheng Xu | LS Applications: Mesh reconstruction & Skin calculation



1

INT

2

\V}

HIVE ARk

pugal
-~
¥

=
Al R
ot~}

March 5, 2019

Bl

UERR B/ NZ3R1%E min| Az — o] BIER {x|AT Az = ATv}, BAER &S/ N _IRF « = [EE &

R xo + kerA °

Bl

#h4 RANSAC BIROAES (ATLLE Ih RS, BB IEREN )

template<class T, class S>

double Ransac<T,S>::compute(std::vector<S> &parameters,
ParameterEsitmator<T,S> *paramH
std: : vector<T> &data,

int numForEstimate)

std::vector<T *> leastSquaresEstimateData;

int numDataObjects = data.size ();

int numVotesForBest = -1;

int *arr = new int[numForEstimate];

// numForEstimate XK = M &R BT F E G r I &%

J/ 3 R 8 E&RE 0 %A 2

short *curVotes = new short [numDataObjects] ;

//one if data[i] agrees with the current model, otherwi
short *bestVotes = new short[numDataObjects] ;

//one if data[i] agrees with the best model, otherwise

stimator

€ ZETO

gero

3



39
40
41
42
43
44

//there are less data objects than the minimum
//required for an exact fit
//complete the code here

) HERAETHRGESE » FREFTRERNGME o
//ff% 100 3 8 HEAM AR » RYFE 100%99%0.5=4950 K &
//ﬁ\ TRZRKEY o« — R RABMMERFEY F X o
computeAllChoices (paramEstimator,data ,numForEstimate,
bestVotes, curVotes, numVotesForBest, 0

data.size (), numForEstimate, 0, arr);

//compute the least squares estimate using the
//largest sub set
//complete the code here

J) HBAARRRN R A A B RN
paramEstimator->leastSquaresEstimate (

leastSquaresEstimateData , parameters) ;

delete [] arr;
delete [] bestVotes;
delete [] curVotes;

return (double)leastSquaresEstimateData.size ()/

(double)numDataObjects;
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