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Overview:Why LS solution is 
important

n The solution is easy to obtain.

n From discrete points, we can use it to approximate and obtain 
the surface of these points.
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1.Line fitting

n Can only give meaningful results if the underlying 
model from which data is being observed is 
indeed a line or close to being linear.

n From a point to the line, there are two kinds of 
distances as the following.



Two kind of distances and difference

n vertical distance                    projected distance

n Dependent of coordinate system/ easier to calculate
n Independent of coordinate system



When using vertical distance

n Goal:

n  Remark:                    is also ok, but if k>2, we will get a non-
linear optimization system, which is more challenging to deal 
with.

n Solution: 



When using projected distance
n Goal: Find a line 
n Solution:                                                     then  plug d into the                           
                                                                             objective function   

                                                            and we choose the minimal 
Plug n back into the expression of d, then we get d, so we get the 
line.n is actually the smallest eigenvector of the covariance matrix

       



2.LS polynomial fitting
n Background: if the points come from a parabola, or some other 

higher-order function.
n The m-th order polynomial function: 
n Goal: minimize
n Solution: 
n Example:  



General cases
n If only the expression f(x) linearly depends on the parameters 

a,b,c,..., we can also extract an LS solution using a linar 
system. We can also set the partial derivatives to 0: 

n f(x) doesn't need to be polynome



3. Solving linear systems in the LS 
sense

n Background: When in a set of linear equations, the number of 
equation is more than the number of unknowns, it's called an 
overdetermined system. Each equation contains some noise, 
or simply inaccurate observations.

n Goal: 
n Solution: Set the partial derivative of x to 0:
n Remark:

n Conclusion: if A has full rank, 



4. Weighed approach
n Background: when there are some outliers in the sample 

points, the traditional LS solution will be quite skewed.

n Goal and solution:

n Iterations: 
n This method can handle data with a moderate amount of 

outliers.



5. Local surface fitting to 3D points
n Background: in 3D cases, we need to reconstruct or 

approximate the local surface of each point. Once we have a 
local surface normal, we have a local reference plane.

n Firstly, find the local surface normal of each point and obtain 
the local reference plane at each point.



n Goal:                                           s.t. 

n Solution:  

n Remark:  r should be appropriate. If too small, the fit might be 
quite susceptible to noise; If too large, local variations such as 
sharp features can get averaged out.

n Secondly,  locally fit a polynomial around the point.                



Expansion: RANSAC
n When there are a large proportion of points that are outliers, 

weighed approach can't handle either.
n Random Sample Consensus can deal with it!
n Five steps to realize the algorithm:
n 有一个模型适应于假设的局内点，即所有的未知参数都能从假设的

局内点计算得出。

n 用1中得到的模型去测试所有的其它数据，如果某个点适用于估计的

模型，认为它也是局内点。

n 如果有足够多的点被归类为假设的局内点，那么估计的模型就足够

合理。

n 然后，用所有假设的局内点去重新估计模型（譬如使用最小二乘法

），因为它仅仅被初始的假设局内点估计过

n 最后，通过估计局内点与模型的错误率来评估模型。

n 上述过程被重复执行固定的次数，每次产生的模型要么因为局内点

太少而被舍弃，要么因为比现有的模型更好而被选用。





               Applications 



Expansion: the relation with SVM
n The key idea of dealing with noise is similar



Expansion: the relation with AdaBoost
n Adjust the weight of each item through iterations
n Give the “important” ones more weight and “unimportant 

ones” less weight.



n 希望听完我们的Report，
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Mesh reconstruction
Problem definition

I Definition: construct mesh from a set of point samples
I Abstraction: given a planar graph with arbitrary connectivity and

a sparse set of control points that lies on the surface,
reconstruct the rest of the surface.
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Mesh reconstruction
Formal definition

I Mesh graph: a graph whose drawing, embedded in some
Euclidean space Rn, forms a regular tiling.

I For a given mesh graph G = (V ,E), the following defines a
fairness and smoothness condition for vertex vi :

vi −
1
di

∑
j:(i,j)∈E

vj = 0 (1)

I For 3D meshes, the linear system can be written as the following:

Lx = 0,Ly = 0,Lz = 0 (2)

where L is the Laplacian of the mesh:

Lij =


1 i = j
− 1

di
(i , j) ∈ E

0 otherwise
(3)
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Mesh reconstruction
Formal definition

I To keep the sharp features of the mesh, consider a (sparse) set
of control points:

vs = (xs, ys, zs), s ∈ C, where C = {s1, s2, . . . , sm} (4)

I The system becomes:
Ax = b (5)

A =

(
L
F

)
,Fij =

{
1 j = si ∈ C
0 otherwise

(6)

bk =

{
0 k ≤ n
xsk−n n < k ≤ n + m

(7)
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Mesh reconstruction
Solution

I To reconstruct the mesh, find x that minimizes

‖Ax− b‖2 = ‖Lx‖2 +
∑
s∈C

|xs − v(x)
s |2 (8)

in least-squares sense.
I Mesh visualization:

Figure: Example of graph and corresponding A matrix. Yellow vertices
are control points.

Least-squares Meshes by Sorkine, Cohen-Or, Tel Aviv University
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Mesh reconstruction
Visualization

Figure: Camel: 30974 vertices in connectivity graph. (a): 1k control points;
(c): 2k control points.
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Mesh reconstruction
Visualization

Figure: Horse: 19851 vertices in connectivity graph. (a): original graph; (c):
1k control vertices.
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Skin calculation
Introduction

I Animating articulated characters such as virtual humans is a
fundamental operation in computer graphics and interactive
applications

I Techniques for rigging character skins by weighting vertices to an
associated skeleton are widely used in video games and the
computer animation industry
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Skin calculation
Definitions

I Construct a vertex skinning transform, T = (Ti), that
approximates a sequence of input meshes.

I Let the sequence of S meshes have deformed vertex positions
P = (p1,p2, . . .pS), where pt ∈ R3N for N vertices. (t : time). Seek
a skinning transformation T t at each sequence step t , that
transforms the undeformed rest pose points, p̃, to approximate
pt :

pt ≈ T t p̃, t = 1 . . .S (9)

Use linear blend skinning, where the transform for vertex i is

T t
i =

∑
b∈Bi

wibT̃ t
b (10)
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Skin calculation
Skin estimation methods

How to estimate which bones can influence each vertex and what the
corresponding vertex weights are, given a mesh sequence and bone
transformations {T̃ t

b}?
I Estimating bone influences: pick β bones (β is given) that

influences vertex i via LS:

γbi =
∑

t=1...S

‖pt
i − T̃ t

bp̃i‖2
2,b = 1 . . .B (11)

I Estimating vertex weights: given vertex-bone influence sets {Bi},
the associated weights are computed using (constrained) LS:∑

b∈Bi

(T̃ t
bp̃i)wib = pt

i , t = 1 . . .S (12)

of the form A(i)w(i) = b(i), along with the affine constraint:∑
b

wib = 1 (13)

Not directly solving this due to potential “overfitting”
Pengcheng Xu | LS Applications: Mesh reconstruction & Skin calculation
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Weight overfitting problem

Direct solution of constrained LS leads to large positive and negative
values, which is suboptimal; use the augmented system instead:[

cA(i)

1 . . . 1

]
w(i) =

(
cb(i)

1

)
(14)

of the form Ã(i)w(i) = b̃(i), where c = 1
‖b(i)‖2

is a scaling factor, and the
ones in the last rows are for the affine constraint.
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Weight overfitting problem
Solving the augmented system

I Truncated Singular Value Decomposition (TSVD): Truncate
singular values at 10−5‖Ã(i)‖2 to avoid overfitting

I Non-Negative Least Squares (NNLS, variant of constrained LS):

Solve Ã(i)w(i) = b̃(i) subjects to w(i) ≥ 0. (15)

Skinning Mesh Animations by James, Twigg, Carnegie Mellon Univ.
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1 第一题

证明最小二乘法 min|Ax− b| 的解为 {x|ATAx = AT b}, 且任意最小二乘解 x = 固定最

小二乘解 x0 + kerA。

2 第二题

补全 RANSAC 的核心代码（可以写伪代码，意思正确即可）

1 template< c lass T, c lass S>
2 double Ransac<T,S>::compute(std::vector <S> &parameters,
3 ParameterEsitmator<T,S> *paramEstimator ,
4 std::vector <T> &data,
5 int numForEstimate)
6 {
7 std::vector <T *> leastSquaresEstimateData;
8 int numDataObjects = data. s ize ();
9 int numVotesForBest = -1;

10 int *arr = new int[numForEstimate];
11 // numForEstimate表示拟合模型所需要的最少点数，
12 //对本例的直线来说，该值为 2
13 short *curVotes = new short[numDataObjects];
14 //one i f data [ i ] a g r e e s wi th the cur r en t model , o t h e rw i s e ze ro
15 short *bestVotes = new short[numDataObjects];
16 //one i f data [ i ] a g r e e s wi th the b e s t model , o t h e rw i s e ze ro
17
18

1



19 // t h e r e are l e s s data o b j e c t s than the minimum
20 // r e qu i r e d f o r an exac t f i t
21 // comple te t he code here
22
23 // 计算所有可能的直线，寻找其中误差最小的解。
24 //对于 100点的直线拟合来说，大约需要 100 *99*0.5=4950次运算，
25 //复杂度无疑是庞大的。一般采用随机选取子集的方式。
26 computeAllChoices(paramEstimator,data,numForEstimate,
27 bestVotes, curVotes, numVotesForBest, 0,
28 data. s ize (), numForEstimate, 0, arr);
29
30 // compute the l e a s t s quare s e s t ima t e us ing the
31 // l a r g e s t sub s e t
32 // comple te t he code here
33
34 // 对局内点再次用最小二乘法拟合出模型
35 paramEstimator-> leastSquaresEstimate(
36 leastSquaresEstimateData ,parameters);
37
38 delete [] arr;
39 delete [] bestVotes;
40 delete [] curVotes;
41
42 return (double) leastSquaresEstimateData. s ize ()/
43 (double)numDataObjects;
44 }
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