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• An overview of data driven graphics
• Set of techniques for different applications 

• Key challenges in data driven graphics and our exploration
• The underline logic/connection behind researches

• Future directions
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Computer Graphics 

• Creating realistic 3D contents in the computer
• Geometry

• Materials

• Lighting effects

• Dynamics



Physically Based Approach 

• Modeling the virtual world by following the geometric & physical 
rules of the real world



Physically Based Approach 

• Modeling the virtual world by following the geometric & physical 
rules of the real world
• ☺Compact and clean

• Computational expensive

• Huge efforts for modeling the rich details 



Data Based Approach 

• Densely sampling the target (geometry, material, lighting…) space and 
reconstructing the results by interpolation

Left: http://illumin.usc.edu/46/michelangelo39s-motion-picture/
Middle: http://www.cs.columbia.edu/CAVE/projects/time_var/time_var.php

Right: http://www.btlnews.com/crafts/visual-fx/vicon-launches-new-facial-motion-capture-system/

http://illumin.usc.edu/46/michelangelo39s-motion-picture/
http://www.cs.columbia.edu/CAVE/projects/time_var/time_var.php
http://www.btlnews.com/crafts/visual-fx/vicon-launches-new-facial-motion-capture-system/


Data Based Approach 

• Densely sampling the target (geometry, material, lighting…) space and 
reconstructing the results by interpolation
• ☺Directly capture the data from the real world

• ☺Fast computation for reconstruction

• ☺High fidelity results with all details

• Expensive capturing devices and setup 

• Hugh amount of data

• Difficult to manipulate and edit



Data Driven Approach 

• Inferring the results from an efficient target space model (geometry, 
materials, lighting…) learned from the data samples



Data Driven Approach 

• Inferring the results from an efficient target space model (geometry, 
materials, lighting…) learned from the data samples
• ☺High fidelity results

• ☺Easy to edit and manipulate

• How to learn the model of the target space?



Data Driven Approach: Our Efforts

Appearance Modeling Rendering AnimationGeometry Modeling

O-CNN [TOG2017]

Mesh Denoising [TOG2016]

Discrete Element Texture [TOG2011]

Dynamic Element Texture [TOG2013]

Microfacet Synthesis [TOG2008]

Bootstraping SVBRDF [TOG2010]

Pocket Reflectometry [TOG2011]

Sparse-as-Possible [TOG2016]

SA-Net [TOG2017]

Religthing by Neural Networks 
[TOG2015]

Real Time Global Illumination by Neural 
Networks [TOG2013]

Kernel Nystorm Relighting [TOG2009] Detailed Hand Animation [TVCG2012]

Video based Facial Capturing [TOG2014]

Audio-Video Facial Animation [TOG2015]

AO-CNN [TOG2018] DeepTOF [TOG2017]



How to Learn the Model of the Target Space? 

Sparse Data
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DeepTOF [TOG2017]

Dense Data
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How to Learn the Model for the Target Space? 

Sparse Data

O-CNN [TOG2017]

Mesh Denoising [TOG2016]

Discrete Element Texture [TOG2011]

Dynamic Element Texture [TOG2013]
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Microfacet Synthesis [TOG2008]

Religthing by Neural Networks 
[TOG2015]

Real Time Global Illumination by Neural 
Networks [TOG2013]

Kernel Nystorm Relighting [TOG2009]

Detailed Hand Animation [TVCG2012]

Video based Facial Capturing [TOG2014]
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Challenges

• How to design the compact model based on the prior knowledge?



Our Efforts

• How to design the compact model based on the prior knowledge?

• Some strategies: sparse, local, decomposition…

Sparse as Possible SVBRDF Acquisition 
[TOG 2016]

Controllable Hand Deformation from Sparse 
Examples with Rich Details [SCA 2011]



Our Efforts

• How to design the compact model based on the prior knowledge?

• Some strategies: sparse, local, decomposition…

Sparse as Possible SVBRDF Acquisition 
[TOG 2016]

Controllable Hand Deformation from Sparse 
Examples with Rich Details [SCA 2011]



Our Goal

• Capturing high quality SVBRDF from as few as possible images
• 3D shape is known

• Lighting is known

• How many images are needed for reconstructing a SVBRDF?

Sparse images Geometry Lighting Surface reflectance (SVBRDF)

Zhiming Zhou, Guojun Chen, Yue Dong, David Wipf, Yong Yu, John Snyder, Xin Tong, Sparse as Possible SVBRDF 
Acquisition, ACM SIGGRAPH ASIA 2016



Our Key Observation

• The reflectance of a surface usually formed by sparse basis materials
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Our Key Observation

• The reflectance of a surface usually formed by sparse basis materials

• The BRDF on each point is a sparse blend of these basis



Sparse-as-Possible Model

• The reflectance of a surface usually formed by sparse basis materials

• The BRDF on each point is a sparse blend of these basis
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• Solve both sparse blending weights 𝒘𝒙,𝒊 and  basis materials 𝑩𝒊

Technical Challenges
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• Solve both sparse blending weights 𝒘𝒙,𝒊 and  basis materials 𝑩𝒊

• Determine the number of basis 𝑵 and the number of weight K

Technical Challenges
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• Model the basis as linear combination of known generic BRDF basis
• Cook-Torrance BRDFs with different roughness and Fresnel

Basis and Weight Optimization
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• Rendering generic BRDF basis under given lighting as prediction basis  

Basis and Weight Optimization
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• Rendering generic BRDF basis under given lighting as prediction basis  

Basis and Weight Optimization
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• Iteratively solving basis materials’ weights and blending weights
• Linear system in each step

• Solve by QP solver

Basis and Weight Optimization
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• With two additional L0 constraints for exactly sparse solution

Determining Number of Basis and Weights
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• Progressively increase the number of weights K and basis 𝑁
• Compute the basis and weights for given K, 𝑁

• Repeat until the total energy starts to increase

Determining Number of Basis and Weights
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Our Analysis

• N BRDF basis can be reconstructed from measurements of multiple 
surface points

• The number of images needed for reconstructing SVBRDF is always 
determined by the number of blending weights K!



Real Capture Results: Rendering



Our Efforts

• How to design the compact model based on the prior knowledge?

• Some strategies: sparse, local, decomposition…

Sparse as Possible SVBRDF Acquisition 
[TOG 2016]

Controllable Hand Deformation from Sparse 
Examples with Rich Details [SCA 2011]



Our Goal

• Generating controllable detailed 3D hand animation from sparse 3D 
pose examples

Haoda Huang, Ling Zhao, KangKang Yin, Yue Qi, Yizhou Yu, Xin Tong, Controllable Hand Deformation from Sparse 
Examples with Rich Details, SCA Best Paper, 2011



Key Challenges

• Large DOF of 3D hand motion
• 21 skeletal degrees of freedom

• Deformed wrinkle details under different poses

• Very sparse input examples
• Capturing is difficult



Key Observations  

• Leverage the coherence between the motions of different points
• Transformations of all points can be modeled as functions of control points

• Can be trained from sparse examples



Key Observations  

• This function can be modeled by a set of local non-linear functions
• For local pose space & geometry parts

• For both coarse level and detail level



Our Solution

Offline
Training

Runtime 
Synthesis

Local Kernel 
CCA

Data 
Acquisition

Preprocessing

.
.

.



Results: Global vs. Local



Results: Performance Driven Animation



How to Learn the Model of the Target Space? 

Sparse Data

O-CNN [TOG2017]

Mesh Denoising [TOG2016]

Discrete Element Texture [TOG2011]

Dynamic Element Texture [TOG2013]

Bootstraping SVBRDF [TOG2010]
Pocket Reflectometry [TOG2011]

Microfacet Synthesis [TOG2008]

Religthing by Neural Networks 
[TOG2015]

Real Time Global Illumination by Neural 
Networks [TOG2013]

Kernel Nystorm Relighting [TOG2009]

Detailed Hand Animation [TVCG2012]

Video based Facial Capturing [TOG2014]

Audio-Video Facial Animation [TOG2015]

Sparse-as-Possible [TOG2016]

SA-Net [TOG2017]

AO-CNN [TOG2018]

DeepTOF [TOG2017]

Dense Data

Leveraging the priors of the 
target space for designing 

compact space model!

Learning the space model 
automatically from the data



Challenges

• How can I fully utilize the data for model building?
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Our Efforts

• How can I fully utilize the data for model building?

• Exploit the representations that can maximize the data coherence

Mesh Denoising with Cascaded Regression 
[SIgASIA 2016]

Discrete Element Textures [SIGGRAPH 2011]



Our Goal

• Automatically generate 3D aggregations from exemplars
• Different shapes and distributions…

• From physically plausible to artistic style

• Easily to edit and manipulate

Chong Yang Ma, Li-Yi Wei, Xin Tong, Discrete Element Textures, ACM SIGGRAPH 2011



Our Key Observation 

• The element distribution follows the Markov random field
• Each element position is determined by its neighborhood only

• We can learn the local distribution from exemplar directly
• Copy & paste

exemplar output



Our Solution

• Extend 2D texture synthesis to discrete elements 
• Non-parametric learning

• User provides the overall shape and exemplar

• Algorithm automatically synthesizes the results from exemplar

3D exemplar

outputdomain

Synthesis



Results



Our Efforts

• How can I fully utilize the data for model building?

• Exploit the representations that can maximize the data coherence

Mesh Denoising with Cascaded Regression 
[SIgASIA 2016]

Discrete Element Textures [SIGGRAPH 2011]



Our Goal

• Removing the noise from scanned 3D mesh
• Automatic and fast enough

3D scanningReal object Denoising result

Pengshuai Wang, Yang Liu, Xin Tong, Mesh Denoising via Cascaded Normal Regressions, ACM SIGGRAPH ASIA 2016



Key Challenges

• Ill-condition problem with unknown ground truth mesh and noise
𝑀 = 𝑀 + 𝜀

• Underline mesh have multi-scale geometry features

• Noise cannot be simple modeled  



Key Observations

• Normal of a facet can be derived from surrounding facet normal

𝑛𝑓 = 𝐺( 𝑆 𝑛𝑓1 , 𝑛𝑓2 , 𝑛𝑓3 … )
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Key Observations

• Normal of a facet can be derived from surrounding facet normal

𝑛𝑓 = 𝐺′( 𝑆 𝑛𝑓1 , 𝑛𝑓2 , 𝑛𝑓3 … )

𝑛𝑓
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Key Observations

• Normal of a facet can be derived from surrounding facet normal

• We can learn the function 𝐺′ from a set of mesh pairs

𝑛𝑓 = 𝐺′( 𝑆 𝑛𝑓1 , 𝑛𝑓2 , 𝑛𝑓3 … )

𝑛𝑓

𝑆 𝑛𝑓1 , 𝑛𝑓2 , 𝑛𝑓3 … ~ 𝑆 𝑛𝑓1 , 𝑛𝑓2 , 𝑛𝑓3 … 𝑛𝑓 = 𝐺( 𝑆 𝑛𝑓1 , 𝑛𝑓2 , 𝑛𝑓3 … )

𝑛𝑓



Our Solution

• Define a set of bi-lateral normal filter results as features 𝑆
• Filtered facet normal descriptor (FND) 

• Learn the function 𝐺′ with cascaded regression functions
• RBF neural networks as regression function in each step
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• Define a set of bi-lateral normal filter results as features 𝑆
• Filtered facet normal descriptor (FND) 
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Our Solution

• Define a set of bi-lateral normal filter results as features 𝑆
• Filtered facet normal descriptor (FND) 

• Learn the function 𝐺′ with cascaded regression functions
• RBF neural networks as regression function in each step

𝐺1′ 𝐺2′ 𝐺3 ′



Results: Synthetic Data
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Results: Real Data



Results: Real Data with Kinect V1



Results: Real Data with Kinect V2



Results: Performance
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• An overview of data driven graphics

• Key challenges in data driven graphics and our exploration

• Future directions



Fundamental Challenges

• High dimensionality of the graphics functions and data
• Geometry, appearance, dynamics, and their interactions (light transport)



Key Challenges

• High dimensionality of the graphics functions and data
• Geometry, appearance, dynamics, and their interactions (light transport)

• Data is difficult to be acquired and measured (small labeled dataset)

• Dimensionality gap between the data and observation (image/video)

• Variant representations and measurements 



Our Efforts

Small labeled dataset

Self-augmented CNN training for SVBRDF 
modeling [SIGGRAPH 2017]

Dimensionality gap Variant representations

Multi-projection GAN [CVPR 2019]

Image based Relighting [SIGGRAPH 2015]

Kernel Nystorm for Relighting [SIGGRAPH 
2009]



Our Efforts

Small labeled dataset

Self-augmented CNN training for SVBRDF 
modeling [SIGGRAPH 2017]

Dimensionality gap Variant representations

Multi-projection GAN [CVPR 2019]

Image based Relighting [SIGGRAPH 2015]

Kernel Nystorm for Relighting [SIGGRAPH 
2009]



Our Goal

• Material modeling from a single image using CNN
• Replace tedious manual work done by skilled artist

• Automatic and fast

• Reasonable quality

Specular Diffuse map Normal mapInput image

Input Diffuse albedo Normal map Specular Novel lighting
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Xiao Li, Yue Dong, Pieter Peers, Xin Tong, Modeling Surface Appearance from a Single Photograph using Self-
Augmented Convolutional Neural Networks, ACM Transactions on Graphics(SIGGRAPH), 36(4), 2017. 



Key Challenge

Result surface material mapsInput image
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Key Challenge

Result surface material mapsInput image
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ground truth surface material mapsInput image
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data pairs



Key Challenge

• We do not have sufficient labeled data for training

Result surface material mapsInput image

CNN

ground truth surface material mapsInput image

Labeled 
data pairs



Our Key Observations

• We do have large amount of unlabeled images

Result surface material mapsInput image

CNN



Our Key Observations

• We do have large amount of unlabeled images

• Inverse mapping of CNN is known: rendering

Result surface material mapsInput image

CNN

Input Diffuse albedo Normal map Specular Novel lighting

R
ef

er
en

ce
SA

-S
V

B
R

D
F-

ne
t

SV
B

R
D

F-
ne

t

Surface material mapsRendered image

Rendering



Our Solution: Self-Augmented CNN Training

• Training CNN with labeled/unlabeled data with the help of rendering

Result surface material mapsInput image

CNN
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Self-Augmented CNN

Ground truth surface material mapsInput image

CNN0
Training with 
labeled data



Self-Augmented CNN

Ground truth surface material mapsInput image

CNN1
Training with 
labeled data



Self-Augmented CNN

Predicted surface material mapsInput image

CNN1

Ground truth surface material mapsInput image

CNN1

Prediction for 
unlabeled data



Self-Augmented CNN

Predicted surface material mapsInput image

CNN1

Reference surface material mapsInput image

CNN1

Render a new image

Rendered image

Rendering to get 
new input image



Self-Augmented CNN
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Predicted surface material mapsRendered image

CNN1

Self-Augmented CNN

Predicted surface material mapsInput image

CNN1

Reference surface material mapsInput image

CNN1

Training with 
rendered pairs



Self-Augmented CNN

Predicted surface material mapsInput image

CNN1

Predicted surface material mapsRendered image

CNN2

Reference surface material mapsInput image

CNN1



Self-Augmented CNN

Predicted surface material mapsInput image
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Comparisons
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Results
Input Diffuse albedo Normal map Specular Novel lighting
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Metal 3

Input Diffuse albedo Normal map Specular Novel lighting
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Our Efforts

Small labeled dataset

Self-augmented CNN training for SVBRDF 
modeling [SIGGRAPH 2017]

Dimensionality gap Variant representations

Multi-projection GAN [CVPR 2019]

Image based Relighting [SIGGRAPH 2015]

Kernel Nystorm for Relighting [SIGGRAPH 
2009]



Our Goal

• Generating 3D shapes (high dimensional) from unannotated 2D image 
(low dimensional projection) collections
• Input : 2D silhouettes of the objects captured from different views

• Output: 3D shapes of the objects in the same class

Xiao Li, Yue Dong, Pieter Peers, Xin Tong, Synthesizing 3D Shapes from Unannotated Image Collections using
Multi-projection Generative Adversarial Networks , Accepted by CVPR 2019.



The Key Challenges

• Gap between 2D image and 3D shapes

• Image has no correspondence
• We don’t have multiple view images of one object

• View information of each image is unknown



Our Solution

• A multiple projection GAN (MP)
• One generator of 3D shapes

• A projection layer 

• A set of discriminators, each for 
images of similar views

• A view prediction network (VP)
• Predicting view information of 

images



Our Solution

• Training two networks iteratively
• Using rendering of 3D shapes generated by multi-projection GAN for VP 

training



Our Solution

• Training two networks iteratively
• Using rendering of 3D shapes generated by multi-projection GAN for VP 

training

• Using VP to classify images according to their views

• Training GAN with more discriminators, each corresponds to images in one 
class 



Comparison



Results



Our Efforts

Small labeled dataset

Self-augmented CNN training for SVBRDF 
modeling [SIGGRAPH 2017]

Dimensionality gap Variant representations

Multi-projection GAN [CVPR 2019]

Image based Relighting [SIGGRAPH 2015]

Kernel Nystorm for Relighting [SIGGRAPH 
2009]



Our Goal

• Relighting a real-world scene with a small set of images
• Fixed view, arbitrary lighting

• No scene geometry and material information

Jiaping Wang, Yue Dong, Xin Tong, Zhouchen Lin, Baining Guo, Kernel Nytrom for Light Transport, ACM SIGGRAPH 2009
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Light Transport Matrix for IBL
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Light Transport Matrix for IBL

light transport matrix 

b = l•



Key Challenge

• Reconstructing light transport matrix from few images
• Avoid directly sampling the light transport matrix with dense images



Our Key Observation

• The light transport matrix of a scene is always low rank
• With proper non-linear map, the rank could be lower due to linear & non-

linear coherence inside the matrix



Our Solution

• Nyström scheme for low-rank matrix approximation

A

C

R

B = ?T = 

B ≈ C A
+

R. .
+

denotes pseudo-inverse



Our Solution

• Kernel Nyström scheme for low-rank matrix approximation
• An inversible kernel map can further reduce the rank of light transport matrix

• Optimize the kernel by minimizing nuclear rank of the kernel matrix

f (A)

f (C)

f (R)

f (B) = ?

f (B) ≈ f (C) f (A)
+

f (R). .

f (T) = 



Results



Our Goal

• An efficient image based relighting solution
• As simple as possible device setup



Our Goal

• An efficient image based relighting solution
• As simple as possible device setup

• As few as possible images

Required images 
by previous methods

Required images 
by our method



Our Key Observations

• Local non-linear coherence 
• Among nearby pixels

• Among nearby lightings



Our Key Idea

• Model the relighting as a regression problem
• Using neural networks for modeling relighting effects of local pixels (each light 

transport matrix element) 

• Each element as function of pixel position and lighting direction/position

• Different image region with different neural networks 

• Leverage the non-linear coherence among all elements

𝐼 𝐩, 𝐥 = Φ(𝐩, 𝐥)



Our Key Idea

• Model the relighting as a regression problem
• Regress the neural networks with pre-captured images under random lighting

• Predict the relighting effects with result neural networks 

Captured 
images

Neural network 
training

Relighting

Offline training stage Online relighting stage



Our Solution

• Device setup
• Hand moved point light source

• Known 3D lighting position

• Fixed view for image capturing



Results

260 images
5% error

260 images
19% error

260 images
9% error

Captured photo [Wang et al. 2009]

Our method[O’Toole et al. 2010]
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What I Learned from This Journey?

• Data driven ≠ deep learning
• Try simple method first, especially when your data is not large

• Domain knowledge is critical
• Reduce the data required for training

• Decompose the problem into simpler one

• Make the model robust and easy to train

• Problem formulation is important
• New formulation leads to new solutions



Outline

• An overview of data driven graphics

• Key challenges in data driven graphics and our exploration

• Future directions



Challenges: Data

• Developing automatic and fast capturing systems

• High quality and easy-to-use modeling tools for end-users
• With the help of sparse sketches or image/video



Challenges: Models

• General CNN models for 3D shape/material/motion analysis

• Powerful GAN model for high quality 3D data generation



Challenges: Learning Methods

• Integrating with the physical priors and constrains

• Bridging the gap between image/videos and high dimensional 
graphics data

• Allowing user control/editing



From Simple Tools to Intelligent Assistants

• Realizing the user intentions and design goals

• Converting abstract input (text/speech) into concrete 3D 
contents



Thanks


