

Data Driven Graphics What Can We Get from Sparse and Dense Data?

Xin Tong, Internet Graphics Group, MSRA 2019.5

Outline

- An overview of data driven graphics
 - Set of techniques for different applications
- Key challenges in data driven graphics and our exploration
 - The underline logic/connection behind researches
- Future directions
 - It is your turn...

Outline

- An overview of data driven graphics
- Key challenges in data driven graphics and our exploration
- Future directions

Computer Graphics

- Creating realistic 3D contents in the computer
 - Geometry
 - Materials
 - Lighting effects
 - Dynamics

Physically Based Approach

 Modeling the virtual world by following the geometric & physical rules of the real world

Physically Based Approach

- Modeling the virtual world by following the geometric & physical rules of the real world
 - <a>Compact and clean
 - <a>Computational expensive
 - ⁽²⁾Huge efforts for modeling the rich details

Data Based Approach

• Densely sampling the target (geometry, material, lighting...) space and reconstructing the results by interpolation

Data Based Approach

- Densely sampling the target (geometry, material, lighting...) space and reconstructing the results by interpolation
 - [©]Directly capture the data from the real world
 - [©]Fast computation for reconstruction
 - [©]High fidelity results with all details
 - ^(C) Expensive capturing devices and setup
 - ^(C)Hugh amount of data
 - ⁽³⁾Difficult to manipulate and edit

Data Driven Approach

• Inferring the results from an efficient target space model (geometry, materials, lighting...) learned from the data samples

Data Driven Approach

- Inferring the results from an efficient target space model (geometry, materials, lighting...) learned from the data samples
 - [©]High fidelity results
 - ^(C)Easy to edit and manipulate
 - ⁽³⁾How to learn the model of the target space?

Data Driven Approach: Our Efforts

How to Learn the Model of the Target Space?

Sparse Data

Dense Data

How to Learn a Model of the Target Space?

Sparse Data

Leveraging the priors of the target space for designing₂₀₁₁ compact space model₁₄

Kernel Nystorm Relighting [TOG2009] Sparse-as Possible [TOG20

Real Time Global Illumination by Neural Networks Networks [TOG2013] [TOG2015]

Dense Data

How to Learn a Model of the Target Space?

Sparse Data

Leveraging the priors of the target space for designing₂₀₁₁ compact space model₁₄

Kernel Nystorm Relighting [TOG2009] Sparse-as Rossible [TOG2

Real Time Global Illumination by Neural Networks Networks [TOG2013] [TOG2015]

Dense Data

Learning the space model

automatically from the data

AO-CNN [TOG2018]

SA-Net [TOG2017]

How to Learn the Model for the Target Space?

Dense Data

Learning the space model

automatically from the data

AO-CNN [TOG2018]

SA-Net [TOG2017]

Challenges

• How to design the compact model based on the prior knowledge?

Our Efforts

- How to design the compact model based on the prior knowledge?
- Some strategies: sparse, local, decomposition...

Sparse as Possible SVBRDF Acquisition [TOG 2016]

Controllable Hand Deformation from Sparse Examples with Rich Details [SCA 2011]

Our Efforts

- How to design the compact model based on the prior knowledge?
- Some strategies: sparse, local, decomposition...

Sparse as Possible SVBRDF Acquisition [TOG 2016]

Controllable Hand Deformation from Sparse Examples with Rich Details [SCA 2011]

Our Goal

- Capturing high quality SVBRDF from as few as possible images
 - 3D shape is known
 - Lighting is known
 - How many images are needed for reconstructing a SVBRDF?

Zhiming Zhou, Guojun Chen, Yue Dong, David Wipf, Yong Yu, John Snyder, Xin Tong, *Sparse as Possible SVBRDF* Acquisition, ACM SIGGRAPH ASIA 2016

Our Key Observation

• The reflectance of a surface usually formed by **sparse basis materials**

Our Key Observation

- The reflectance of a surface usually formed by **sparse basis materials**
- The BRDF on each point is a **sparse blend** of these basis

Our Key Observation

- The reflectance of a surface usually formed by **sparse basis materials**
- The BRDF on each point is a **sparse blend** of these basis

Sparse-as-Possible Model

- The reflectance of a surface usually formed by **sparse basis materials**
- The BRDF on each point is a **sparse blend** of these basis

Technical Challenges

• Solve both sparse blending weights $W_{x,i}$ and basis materials B_i

Technical Challenges

- Solve both sparse blending weights $W_{x,i}$ and basis materials B_i
- Determine the number of basis N and the number of weight K

- Model the basis as linear combination of known generic BRDF basis
 - Cook-Torrance BRDFs with different roughness and Fresnel

• Rendering generic BRDF basis under given lighting as prediction basis

• Rendering generic BRDF basis under given lighting as prediction basis

- Iteratively solving basis materials' weights and blending weights
 - Linear system in each step
 - Solve by QP solver

Determining Number of Basis and Weights

• With two additional LO constraints for exactly sparse solution

$$\underset{K,N,w_{x},w_{i}^{*}}{\operatorname{argmin}} \left\| s_{x} - \sum_{i=1}^{N} w_{x,i} \cdot \sum_{j=1}^{M} b_{i,j} \cdot s_{j_{x}} \right\|^{2} + \lambda_{1}N + \lambda_{0}K$$
$$\|w_{x}\|_{0} \leq K$$

Determining Number of Basis and Weights

- Progressively increase the number of weights K and basis N
 - Compute the basis and weights for given K, N
 - Repeat until the total energy starts to increase

Our Analysis

- N BRDF basis can be reconstructed from measurements of multiple surface points
- The number of images needed for reconstructing SVBRDF is always determined by the number of blending weights K!

Real Capture Results: Rendering

Our Efforts

- How to design the compact model based on the prior knowledge?
- Some strategies: sparse, local, decomposition...

Sparse as Possible SVBRDF Acquisition [TOG 2016]

Controllable Hand Deformation from Sparse Examples with Rich Details [SCA 2011]

Our Goal

Generating controllable detailed 3D hand animation from sparse 3D pose examples

Haoda Huang, Ling Zhao, KangKang Yin, Yue Qi, Yizhou Yu, Xin Tong, *Controllable Hand Deformation from Sparse Examples with Rich Details*, SCA Best Paper, 2011

Key Challenges

- Large DOF of 3D hand motion
 - 21 skeletal degrees of freedom
 - Deformed wrinkle details under different poses
- Very sparse input examples
 - Capturing is difficult

- Leverage the coherence between the motions of different points
 - Transformations of all points can be modeled as functions of control points
 - Can be trained from sparse examples

- This function can be modeled by a set of local non-linear functions
 - For local pose space & geometry parts
 - For both coarse level and detail level

Results: Global vs. Local

Results: Performance Driven Animation

How to Learn the Model of the Target Space?

Sparse Data

Leveraging the priors of the target space for designing₂₀₁₁ compact space model!₁₄

Kernel Nystorm Relighting [TOG2009] Sparse-as Possible [TOG

Real Time Global Illumination by Neural Networks Networks [TOG2013] [TOG2015]

Challenges

• How can I fully utilize the data for model building?

Our Efforts

- How can I fully utilize the data for model building?
- Exploit the representations that can maximize the data coherence

Discrete Element Textures [SIGGRAPH 2011]

Mesh Denoising with Cascaded Regression [SIgASIA 2016]

Our Efforts

- How can I fully utilize the data for model building?
- Exploit the representations that can maximize the data coherence

Mesh Denoising with Cascaded Regression [SIgASIA 2016]

Our Goal

- Automatically generate 3D aggregations from exemplars
 - Different shapes and distributions...
 - From physically plausible to artistic style
 - Easily to edit and manipulate

Chong Yang Ma, Li-Yi Wei, Xin Tong, Discrete Element Textures, ACM SIGGRAPH 2011

Our Key Observation

- The element distribution follows the Markov random field
 - Each element position is determined by its neighborhood only
- We can learn the local distribution from exemplar directly
 - Copy & paste

- Extend 2D texture synthesis to discrete elements
 - Non-parametric learning
 - User provides the overall shape and exemplar
 - Algorithm automatically synthesizes the results from exemplar

Results

Our Efforts

- How can I fully utilize the data for model building?
- Exploit the representations that can maximize the data coherence

Discrete Element Textures [SIGGRAPH 2011]

Mesh Denoising with Cascaded Regression [SIgASIA 2016]

Our Goal

- Removing the noise from scanned 3D mesh
 - Automatic and fast enough

Pengshuai Wang, Yang Liu, Xin Tong, Mesh Denoising via Cascaded Normal Regressions, ACM SIGGRAPH ASIA 2016

Key Challenges

- Ill-condition problem with unknown ground truth mesh and noise $M = \overline{M} + \varepsilon$
- Underline mesh have multi-scale geometry features
- Noise cannot be simple modeled

• Normal of a facet can be derived from surrounding facet normal

• Normal of a facet can be derived from surrounding facet normal

$$S(n_{f_1}, n_{f_2}, n_{f_3} \dots) \sim S(\overline{n_{f_1}}, \overline{n_{f_2}}, \overline{n_{f_3}} \dots)$$

• Normal of a facet can be derived from surrounding facet normal

 $\overline{n_f} = G'(S(n_{f_1}, n_{f_2}, n_{f_3} \dots))$

 $\overline{n_f} = G(S(\overline{n_{f_1}}, \overline{n_{f_2}}, \overline{n_{f_3}} \dots))$

 $S(n_{f_1}, n_{f_2}, n_{f_3} \dots) \sim S(\overline{n_{f_1}}, \overline{n_{f_2}}, \overline{n_{f_3}} \dots)$

- Normal of a facet can be derived from surrounding facet normal
- We can learn the function G' from a set of mesh pairs

 $\overline{n_f} = G'(S(n_{f_1}, n_{f_2}, n_{f_3} \dots))$

 $\overline{n_f} = G(S(\overline{n_{f_1}}, \overline{n_{f_2}}, \overline{n_{f_3}} \dots))$

 $S(n_{f_1}, n_{f_2}, n_{f_3} \dots) \sim S(\overline{n_{f_1}}, \overline{n_{f_2}}, \overline{n_{f_3}} \dots)$

- Define a set of bi-lateral normal filter results as features S
 - Filtered facet normal descriptor (FND)
- Learn the function G' with cascaded regression functions
 - RBF neural networks as regression function in each step

- Define a set of bi-lateral normal filter results as features S
 - Filtered facet normal descriptor (FND)
- Learn the function G' with cascaded regression functions
 - RBF neural networks as regression function in each step

- Define a set of bi-lateral normal filter results as features S
 - Filtered facet normal descriptor (FND)
- Learn the function G' with cascaded regression functions
 - RBF neural networks as regression function in each step

- Define a set of bi-lateral normal filter results as features S
 - Filtered facet normal descriptor (FND)
- Learn the function G' with cascaded regression functions
 - RBF neural networks as regression function in each step

Results: Synthetic Data

Results: Synthetic Data

Results: Real Data

 D^n

Results: Real Data with Kinect V1

Results: Real Data with Kinect V2

Results: Performance

N_f	10k	25k	54k	99k	171k	566k
Bilateral normal	1.2s	2.7s	6.3s	14.2s	23.7s	71.4s
L_0 smoothing	4.7s	37.1s	286.2s	622.4s	885.2s	3155.7s
Guided normal	2.6s	7.2s	19.2s	44.9s	99.7s	558.9s
Bayesian	6.1s	16.5s	39.1s	76.6s	126.2s	394.6s
Our method	0.8 s	1.8s	2.9 s	5.7 s	11.3 s	28.3s

Outline

- An overview of data driven graphics
- Key challenges in data driven graphics and our exploration
- Future directions

Fundamental Challenges

- High dimensionality of the graphics functions and data
 - Geometry, appearance, dynamics, and their interactions (light transport)

Key Challenges

- High dimensionality of the graphics functions and data
 - Geometry, appearance, dynamics, and their interactions (light transport)
 - Data is difficult to be acquired and measured (small labeled dataset)
 - Dimensionality gap between the data and observation (image/video)
 - Variant representations and measurements

Our Efforts

Small labeled dataset

Dimensionality gap

Variant representations

Self-augmented CNN training for SVBRDF modeling [SIGGRAPH 2017]

Multi-projection GAN [CVPR 2019]

Kernel Nystorm for Relighting [SIGGRAPH 2009]

Image based Relighting [SIGGRAPH 2015]

Our Efforts

Small labeled dataset

Dimensionality gap

Variant representations

Self-augmented CNN training for SVBRDF modeling [SIGGRAPH 2017]

Multi-projection GAN [CVPR 2019]

Kernel Nystorm for Relighting [SIGGRAPH 2009]

Image based Relighting [SIGGRAPH 2015]

Our Goal

- Material modeling from a single image using CNN
 - Replace tedious manual work done by skilled artist
 - Automatic and fast
 - Reasonable quality

New rendering

Xiao Li, Yue Dong, Pieter Peers, Xin Tong, *Modeling Surface Appearance from a Single Photograph using Self-Augmented Convolutional Neural Networks*, ACM Transactions on Graphics(SIGGRAPH), 36(4), 2017.

• We do not have sufficient labeled data for training

Our Key Observations

• We do have large amount of unlabeled images

Our Key Observations

• We do have large amount of unlabeled images

Input image

Result surface material maps

• Inverse mapping of CNN is known: rendering

Rendered image

Surface material maps

Our Solution: Self-Augmented CNN Training

• Training CNN with labeled/unlabeled data with the help of rendering

Training with labeled data

Rendering to get new input image

Training with rendered pairs

Comparisons

With Self-Augmented Training

Without Self-Augmented Training

Ground truth

Results

Our Efforts

Small labeled dataset

Dimensionality gap

Variant representations

Self-augmented CNN training for SVBRDF modeling [SIGGRAPH 2017]

Multi-projection GAN [CVPR 2019]

Kernel Nystorm for Relighting [SIGGRAPH 2009]

Image based Relighting [SIGGRAPH 2015]

Our Goal

- Generating 3D shapes (high dimensional) from unannotated 2D image (low dimensional projection) collections
 - Input : 2D silhouettes of the objects captured from different views
 - Output: 3D shapes of the objects in the same class

Xiao Li, Yue Dong, Pieter Peers, Xin Tong, *Synthesizing 3D Shapes from Unannotated Image Collections using Multi-projection Generative Adversarial Networks*, Accepted by CVPR 2019.

The Key Challenges

- Gap between 2D image and 3D shapes
- Image has no correspondence
 - We don't have multiple view images of one object
- View information of each image is unknown

- A multiple projection GAN (MP)
 - One generator of 3D shapes
 - A projection layer
 - A set of discriminators, each for images of similar views
- A view prediction network (VP)
 - Predicting view information of images

- Training two networks iteratively
 - Using rendering of 3D shapes generated by multi-projection GAN for VP training

- Training two networks iteratively
 - Using rendering of 3D shapes generated by multi-projection GAN for VP training
 - Using VP to classify images according to their views
 - Training GAN with more discriminators, each corresponds to images in one class

Results

Our Efforts

Small labeled dataset

Dimensionality gap

Variant representations

Self-augmented CNN training for SVBRDF modeling [SIGGRAPH 2017]

Multi-projection GAN [CVPR 2019]

Kernel Nystorm for Relighting [SIGGRAPH 2009]

Image based Relighting [SIGGRAPH 2015]

Our Goal

- Relighting a real-world scene with a small set of images
 - Fixed view, arbitrary lighting
 - No scene geometry and material information

Jiaping Wang, Yue Dong, Xin Tong, Zhouchen Lin, Baining Guo, Kernel Nytrom for Light Transport, ACM SIGGRAPH 2009

Light Transport Matrix for IBL

Light Transport Matrix for IBL

Light Transport Matrix for IBL

- Reconstructing light transport matrix from few images
 - Avoid directly sampling the light transport matrix with dense images

Our Key Observation

- The light transport matrix of a scene is always low rank
 - With proper non-linear map, the rank could be lower due to linear & non-linear coherence inside the matrix

• Nyström scheme for low-rank matrix approximation

- Kernel Nyström scheme for low-rank matrix approximation
 - An inversible kernel map can further reduce the rank of light transport matrix
 - Optimize the kernel by minimizing nuclear rank of the kernel matrix

$$f(\mathbf{T}) = \begin{cases} f(\mathbf{A}) & f(\mathbf{R}) \\ f(\mathbf{C}) & f(\mathbf{B}) = ? \end{cases}$$

$$f(\mathbf{B}) \approx f(\mathbf{C}) \cdot f(\mathbf{A})^{\dagger} \cdot f(\mathbf{R})$$

Results

Our Goal

- An efficient image based relighting solution
 - As simple as possible device setup

Our Goal

- An efficient image based relighting solution
 - As simple as possible device setup
 - As few as possible images

Required images by previous methods

Required images by our method

Our Key Observations

- Local non-linear coherence
 - Among nearby pixels
 - Among nearby lightings

Our Key Idea

- Model the relighting as a regression problem
 - Using neural networks for modeling relighting effects of local pixels (each light transport matrix element)
 - Each element as function of pixel position and lighting direction/position
 - Different image region with different neural networks
 - Leverage the non-linear coherence among all elements

$$I(\mathbf{p},\mathbf{l}) = \Phi(\mathbf{p},\mathbf{l})$$

Our Key Idea

- Model the relighting as a regression problem
 - Regress the neural networks with pre-captured images under random lighting
 - Predict the relighting effects with result neural networks

Our Solution

• Device setup

- Hand moved point light source
- Known 3D lighting position
- Fixed view for image capturing

Results

Captured photo

[Wang et al. 2009]

[O'Toole et al. 2010]

Our method

Results

Results

What I Learned from This Journey?

- Data driven ≠ deep learning
 - Try simple method first, especially when your data is not large
- Domain knowledge is critical
 - Reduce the data required for training
 - Decompose the problem into simpler one
 - Make the model robust and easy to train
- Problem formulation is important
 - New formulation leads to new solutions

Outline

- An overview of data driven graphics
- Key challenges in data driven graphics and our exploration
- Future directions

Challenges: Data

- Developing automatic and fast capturing systems
- High quality and easy-to-use modeling tools for end-users
 - With the help of sparse sketches or image/video

Challenges: Models

- General CNN models for 3D shape/material/motion analysis
- Powerful GAN model for high quality 3D data generation

Challenges: Learning Methods

- Integrating with the physical priors and constrains
- Bridging the gap between image/videos and high dimensional graphics data
- Allowing user control/editing

From Simple Tools to Intelligent Assistants

- Realizing the user intentions and design goals
- Converting abstract input (text/speech) into concrete 3D contents

Thanks