Modeling \& Optimization

Ariel Shamir
Efi Arazi School of Computer science

Key Idea: Content Aware

- Remove (or Insert) "less important" parts and preserve more important ones
- In effect this means we are creating ... content aware resizing
- Key questions: what is important?

What is an Image?

Common to use one byte per value: $0=$ black, $255=$ white

\%* Image Importance

- Today: face detectors, object detectors, scene recognition etc...

Edges carry most information

 z^{*} in the scene

Finding Edges

- Edges = discontinuity of various forms
- Function discontinuity \rightarrow large derivatives

\% Image Derivatives?

- Derivative of an image is the derivative of the function of the image
- But: derivatives are defined on smooth functions.
- Defined using discrete differences

Derivative Approximations

- Remember the definition of the derivative:

$$
f^{\prime}(x)=\operatorname{Lim}_{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

- For a small enough Δx the following is a good approximation for the derivative:

$$
\frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Finite Difference

- We can approximate the first derivative by

Forward difference: $f^{\prime}(x)=\frac{f(x+\Delta x)-f(x)}{\Delta x}+O(\Delta x)$
Backward difference: $f^{\prime}(x)=\frac{f(x)-f(x-\Delta x)}{\Delta x}+O(\Delta x)$

- Or by adding the two (central difference):

$$
f^{\prime}(x)=\frac{f(x+\Delta x)-f(x-\Delta x)}{2 \Delta x}+O(\Delta x)
$$

Pixel Differences

- In an image the smallest $\Delta x($ or $\Delta y)$ is 1 so:

$$
\begin{aligned}
& \mathrm{dx}(\mathrm{x}, \mathrm{y})=\mathrm{I}(\mathrm{x}, \mathrm{y})-\mathrm{I}(\mathrm{x}-1, \mathrm{y}) \\
& \mathrm{dy}(\mathrm{x}, \mathrm{y})=\mathrm{I}(\mathrm{x}, \mathrm{y})-\mathrm{I}(\mathrm{x}, \mathrm{y}-1)
\end{aligned}
$$

We get values:

- $\mathrm{I}(\mathrm{x}, \mathrm{y}) \in[0,255] \rightarrow \mathrm{d}(\mathrm{x}, \mathrm{y}) \in[-255,255]$

Mapping to an Image?

- The values are now between -255 to 255
- How can we visualize these differences?
- We map it back to [0,255] by adding 255 and dividing by 2 .
- Negative values are dark
- Positive values are light
- Zero is gray!
- (or we can just take the absolute value - black remains 0)

\sum^{*} Gradient

- For each pixel we have dx,dy values.
- Together they define a vector (dx,dy) that is called the gradient whose direction is the maximum change and magnitude is the amount of change.

z^{*} The Optimal Seam

$E(\mathbf{I})=\left|\frac{\partial}{\partial x} \mathbf{I}\right|+\left|\frac{\partial}{\partial y} \mathbf{I}\right| \Rightarrow s^{*}=\arg \min E(s)$

** How Many Seams?

- An image has n columns and m rows
- Start from any pixel at top row (n)
- For each one choose between 3 possible pixels in the next row
- For each one of those, choose between 3 in the next row...
- $n * 3^{m-1}=$ exponential! $:$

Pixel Attribute \rightarrow Dynamic Programming

$\mathrm{M}(i, j)=\mathrm{e}(i, j)+\min (\mathrm{M}(i-1, j-1), \mathrm{M}(i-1, j), \mathrm{M}(i-1, j+1))$

5	8	12	3
9	2	3	9
7	3	4	2
5	4	7	8

Dynamic Programming

$$
\mathrm{M}(i, j)=\mathrm{e}(i, j)+\min (\mathrm{M}(i-1, j-1), \mathrm{M}(i-1, j), \mathrm{M}(i-1, j+1))
$$

5	8	12	3
9	$2+5$	3	9
7	3	4	2
5	4	7	8

z* Dynamic Programming

$\mathrm{M}(i, j)=\mathrm{e}(i, j)+\min (\mathrm{M}(i-1, j-1), \mathrm{M}(i-1, j), \mathrm{M}(i-1, j+1))$

5	8	12	3
9	7	$3+3$	9
7	3	4	2
5	4	7	8

Dynamic Programming

$$
\mathrm{M}(i, j)=\mathrm{e}(i, j)+\min (\mathrm{M}(i-1, j-1), \mathrm{M}(i-1, j), \mathrm{M}(i-1, j+1))
$$

5	8	12	3
9	7	6	12
14	9	10	8
14	13	15	$8+8$

** Backtracking the Seam

$$
\mathrm{M}(i, j)=\mathrm{e}(i, j)+\min (\mathrm{M}(i-1, j-1), \mathrm{M}(i-1, j), \mathrm{M}(i-1, j+1))
$$

5	8	12	3
9	7	6	12
14	9	10	8
14	13	15	16

** Backtracking the Seam

$\mathrm{M}(i, j)=\mathrm{e}(i, j)+\min (\mathrm{M}(i-1, j-1), \mathrm{M}(i-1, j), \mathrm{M}(i-1, j+1))$

5	8	12	3
9	7	6	12
14	9	10	8
14	13	15	16

© Ariel Shamir IDC

Backtracking the Seam

$$
\mathrm{M}(i, j)=\mathrm{e}(i, j)+\min (\mathrm{M}(i-1, j-1), \mathrm{M}(i-1, j), \mathrm{M}(i-1, j+1))
$$

5	8	12	3
9	7	6	12
14	9	10	8
14	13	15	16

Dynamic Programming

- A method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions using a memorybased data structure (array, map,etc).
- A problem where the sub-solution is the optimal solution to the sub-problem.
- In our case?

* Aspect Ratio Change

Enlarging an Image?

** Inserting a Seam?

z^{*} Both Dimensions?

- Remove horizontal seam first?
- Remove vertical seams first?
- Alternate between the two?
- The optimal order can be found! \rightarrow Dynamic Prog.

z^{*} Optimal Order Map

Removal of vertical seams

	- 3	16	19	
16	14	22	28	
19	31	25	35	
24	28	29	???	
32	35	33		
41	38	35		

Optimal?

- Greedy in iterative sense we assume the cost function is monotonic!
- In fact there are many (exponential) ways to get to the desired size ($\mathrm{m} \times \mathrm{n}$) we must check all of them but we store only the best of two:
- $(m+1 \times n)+($ row seam cost $)$
- ($m \times n+1$) + (col seam cost)
- Key idea: ratio (of row \& column) is more important than order

** * How Many Paths to $(3,2)$?

What did we check?

- We find best path to (3,2) by checking RCR against RRC only
- but maybe CRR is better than them? - we didn't check it because we chose RC over CR to get to the $(2,2)$ entry in the previous stage - and we are bound to this choice!

0		$R R \quad \uparrow$	\ldots
C	$R C \quad<$	$?$	
	\ldots		
\ldots			

z^{*} Gathering Pixels Row by Row

3 B 6 5 4 2 8 7
\begin{tabular}{\|l
\hline
\end{tabular} |

Resize width from m to m^{\prime}
For each row r from 0 to n
For each column c from 0 to m

$C^{\prime}=0$
If seam_index $(r, C)>\left(m-m^{\prime}\right)$ Copy pixel (r, c) to (r, c^{\prime}) $c^{\prime}=c^{\prime}+1$

Gathering Pixels by Columns

Resize height from n to $n '$

For each column c from 0 to m
For each row r from 0 to n
$r^{\prime}=0$
If seam_index $(r, c)>\left(n-n^{\prime}\right)$
Copy pixel (r,c) to (r',c)
$r^{\prime}=r '+1$

** Combining Both Directions?

- Why can't we just interchange?
- When we remove one row seam we must remove one pixel from each column seam!
- Similarly the opposite: when we remove one column seam we must remove one pixel from each row seam!
- This will ensure that we can interchange the operations
- This means that each row seam must contain one pixel from each column seam and vice verse!

** "Seam Sudoku"

- Each Row seam must include numbers 1...m
- Each Column seam must include numbers 1...n
- Can this be done?

Trivial Solution: Rows \&				
Any permutation of rows \& columns:				
3,2 3,5 3,3 3,1 3,4 1,2 1,5 1,3 1,1 1,4 4,2 4,5 4,3 4,1 4,4 2,2 2,5 2,3 2,1 2,4				

* OPEN QUESTIONS

- Seams Sudoku: Row seams \& Column seams together?
- Possible directions:
- Given a non-constrained row-seam order maybe constrain the column seam while we build them (and vice verse)
- Given a constrained solution (e.g. start with rows \& columns) - switch pixel orders to get better seams while preserving the constraints

* Tracking Inserted Energy

- Three possibilities when removing pixel $P_{i, j}$

Pixel $\mathrm{P}_{\mathrm{i}, \mathrm{j}}$: Left Seam

$C_{L}(i, j)=|I(i, j+1)-I(i, j-1)||+|I(i-1, j)-I(i, j-1)|$

* Pixel $\mathrm{P}_{\mathrm{i}, \mathrm{j}}$: Right Seam

$C_{R}(i, j)=|I(i, j+1)-I(i, j-1)|+|I(i-1, j)-I(i, j+1)|$

$\underline{\text { Pixel } \mathrm{P}_{\mathrm{i}, \mathrm{j}}}$: Vertical Seam

	Old "Backward" Energy Function	
	$M(i, j)=E(i, j)+\min \left\{\begin{array}{l} M(i-1, j-1) \\ M(i-1, j) \\ M(i-1, j+1) \end{array}\right.$	

New Forward Looking Energy

$$
M(i, j)=\min \left\{\begin{array}{l}
M(i-1, j-1)+C_{L}(i, j) \\
M(i-1, j)+C_{U}(i, j), \\
M(i-1, j+1)+C_{R}(i, j)
\end{array}\right.
$$

** Adding "Pixel Energy"

$M(i, j)=P(i, j)+\min \left\{\begin{array}{l}M(i-1, j-1)+C_{L}(i, j) \\ M(i-1, j)+C_{U}(i, j), \\ M(i-1, j+1)+C_{R}(i, j)\end{array}\right.$

(c) ariel shamir

(c) ariel shamir

₹* Optimization Summary

- Seam Carving: simple dynamic programming
- Choosing Seam Order (H or V): exponential - but we can choose greedy using dynamic prog.
- Seam Soduko: creating multisize image in both direction: exponential + topological constraints

