
Spatial Data Structures

1. Hierarchical Bounding Volumes
2. Grids
3. Octrees
4. BSP Trees

2Baoquan Chen 2019

Speeding Up Ray Tracing

• Trace fewer rays

– most relevant in recursive ray tracing

• Speed up each ray-surface intersection test

– optimize ray-triangle, ray-sphere intersection code

– compile with optimizer

• Do fewer ray-surface intersection tests

– subsequent hits on the same object often hit the same polygon.

– shadow object caching
» When a shadow ray hits an object, remember that object and check it first

against the next shadow ray heading toward that light.

» If it hits, you know that shadow applies; it doesn’t matter if some other
shadow source is closer to the object than the light source.

• For more info
Chapter by Arvo & Kirk in the book Introduction to Ray Tracing

3Baoquan Chen 2019

Spatial Data Structures

• Data structures for efficiently storing geometric information

• They are useful for

–Collision detection (will the spaceships collide?)

–Location queries (which is the nearest post office?)

–Chemical simulations (which protein will this drug
molecule interact with?)

–Rendering (is this aircraft carrier on-screen?), and more

• Good data structures can give speed up ray tracing by 10x,
100x, or more

4Baoquan Chen 2019

Spatial Data Structures

• We’ll look at

–Hierarchical bounding volumes

–Grids

–Octrees

–BSP trees

5Baoquan Chen 2019

Bounding Volumes

• Simple notion: wrap things that are hard to check for ray intersection
in things that are easy to check.

– Example: wrap a complicated polygonal mesh in a box

– Ray can’t hit the real object unless it hits the box

– Adds some overhead, but generally pays for itself.

• Most common bounding volume types: sphere and box

– box can be axis-aligned or not

• You want a snug fit!

Good!
Bad!

6Baoquan Chen 2019

Hierarchical Bounding Volumes (HBV’s)
• Tree data structure:

– List of bounding volumes (BV’s), e.g. spheres, boxes

– Each BV can contain a list of sub-volumes

– E.g., Human figure:

» torso bounding-box (BB) contains arm BB, which contains finger BB,
etc.

• Intersection testing: recursively descend tree

intersect(BV)
if ray misses BV, return MISS
closest = infinity
for each subvolume stored in BV

if ray intersects subvolume, and closer than closest
update closest

return closest

• Works well if you use good (appropriate) bounding volumes

• If your BVs are objects, you can have multiple classes and pick the best for
each enclosed object!

7Baoquan Chen 2019

Grids

• Data structure: a 3-D array of cells (voxels) that tile space

– Each cell points to list of all surfaces intersecting that cell

• Intersection testing:

– Start tracing at cell where ray begins

– Step from cell to cell, searching for the first intersection point

– At each cell, test for intersection with all surfaces pointed to by that cell

– If there is an intersection, return the closest one

8Baoquan Chen 2019

More on Grids

• Be Careful! The fact that a ray passes through a cell and hits an object
doesn’t mean the ray hit that object in that cell

• Optimization: cache intersection point and ray id in “mailbox” associated
with each object

• Grids are a poor choice when the world is nonhomogeneous (clumpy)

– e.g. a teapot in a stadium: many polygons clustered in a small
space

• How many cells to use?

– too few many objects per cell slow

– too many many empty cells to step through slow
• Grids work well when you can arrange that each cell lists a few (ten, say)

objects

• Better strategy for some scenes: nested grids

9Baoquan Chen 2019

Octrees

• Quadtree is the 2-D generalization of binary tree

– node (cell) is a square

– recursively split into four equal sub-squares

– stop when leaves get “simple enough”

10Baoquan Chen 2019

Octrees

• Octree is the 3-D generalization of quadtree

– node (cell) is a cube, recursively split into eight equal sub-cubes

– for ray tracing:
» stop splitting when the number of objects intersecting the cell gets “small

enough” or the tree depth exceeds a limit

» internal nodes store pointers to children, leaves store list of surfaces

– more expensive to traverse than a grid

– but an octree adapts to nonhomogeneous, clumpy scenes better

trace(cell, ray) { // returns object hit or NONE
if cell is leaf, return closest (objects_in_cell(cell))

for child cells pierced by ray, in order // 1 to 4 of these
obj = trace(child, ray)

if obj!=NONE return obj

return NONE

}

11Baoquan Chen 2019

Which Data Structure is Best for Ray Tracing?

• Grids are easy to implement, but they’re memory hogs (and slow) for
nonhomogeneous scenes, i.e. most scenes

• Octrees are pretty good, but not as fast as grids for some scenes

• Nested grids seem to be the fastest on static scenes

• If scene is dynamic, the cost of regenerating or updating the data structure
may become an issue

• In such cases, hierarchical bounding volumes may be best

• Hierarchical bounding volumes easy to implement if your model is naturally
hierarchical (e.g. human), otherwise not

• For other visibility algorithms:

– BSP trees useful for Painter’s algorithm...

12Baoquan Chen 2019

k-d Trees

• Relax the rules for quadtrees and octrees:

• first variant: k-dimensional (k-d) tree

– don’t always split at midpoint

– split only one dimension at a time (i.e. x or
y or z)

– useful for clustering and choosing
colormaps for color image quantization

13Baoquan Chen 2019

BSP Trees

• Relax the rules for quadtrees and octrees:

• second variant: binary space partitioning (BSP) tree

– permit splits with any line

– in general, split k dimensional space with k-1
dimensional hyperplane

» 2-D space split with lines (most of our
examples)

» 3-D space split with planes

» each node corresponds to a (potentially
unbounded) convex polyhedron

– For lots of info, see http://reality.sgi.com/bspfaq/

– useful for Painter’s algorithm

http://reality.sgi.com/bspfaq/

14Baoquan Chen 2019

Building a BSP Tree

• Let’s look at simple example with 3 line segments

• Arrowheads are to show left and right sides of lines.

• Using line 1 or 2 as root is easy.
• (examples from http://www.geocities.com/SiliconValley/2151/bsp.html)

Line 2
Line 3

Line 1

Viewpoint

1

1

2

3

A B C D

a BSP tree
using 2 as root

A

B

D

C

3
2

the subdivision
of space it implies

15Baoquan Chen 2019

Building the Tree 2

• Using line 3 for the root requires a split

Line 2a

Line 3

Line 1

Viewpoint

1

2b2a

Line 2b

3

16Baoquan Chen 2019

Building a Good Tree - the tricky part

• A naïve partitioning of n polygons will yield O(n3) polygons!

• Algorithms exist to find partitionings that produce O(n2).

– For example, try all remaining polygons and add the one which causes
the fewest splits (I think this works ;)

– Fewer splits -> larger polygons -> better polygon fill efficiency

• Also, we want a balanced tree.

– More important for ray casting than scan conversion.

• These goals conflict.

• note: in the examples we’ve shown, the geometric objects being stored are planar,
and we split using the planes of these objects, but that needn’t be so – could
theoretically split with any plane

17Baoquan Chen 2019

Uses for Binary Space Partitioning (BSP) Trees

• Painter’s algorithm rendering

– good for
» static 3-D scenes with moving viewpoint (flight simulators)

» architectural scenes with a small number of polygons (DOOM)

» if you don’t have z-buffer hardware

– Add a few monsters and such after the environment is drawn

• Ray tracing

• Solid modeling with polyhedra

• History:

– BSP trees first used by Naylor, Fuchs, et al. for Painter’s algorithm ~1980

– theoreticians scoffed at their worst-case performance

– considered unpromising

– revived by John Carmack, author of Quake, and the PC game community
» out of necessity: no z-buffer hardware for PC’s at the time

18Baoquan Chen 2019

Painter’s Algorithm with BSP trees

• Build the tree
– Involves splitting some polygons

–Slow, but done only once for static scene

• Correct traversal lets you draw in back-to-front or
front-to-back order for any viewpoint

–Order is view-dependent

–Precompute tree once

–Do the “sort” on the fly

19Baoquan Chen 2019

Drawing a BSP Tree

• Each polygon has a set of coefficients:

Ax + By + Cz + D

• Plug the coordinates of the viewpoint in and see:

>0 : front side

<0 : back facing

=0 : on plane of polygon

• Back-to-front draw: inorder traversal, do farther child first

• Front-to-back draw: inorder traversal, do near child first

front_to_back(tree, viewpt) {
if (tree == null) return;
if (positive_side_of(root(tree), viewpt)) {

front_to_back(positive_branch(tree, viewpt);
display_polygon(root(tree));
front_to_back(negative_branch(tree, viewpt);

}
else { …draw negative branch first…}

}

20Baoquan Chen 2019

Drawing Back to Front

• Use Painter’s Algorithm for hidden surface removal

Line 2a

Line 3

Line 1

Viewpoint 1

2b2a

3

Line 2b

Steps:
–Draw objects on far side of line 3

»Draw objects on far side of
line 2a

–Draw line 1

»Draw line 2a

–Draw line 3

–Draw objects on near side of line 3

»Draw line 2b

21Baoquan Chen 2019

Further Speedups

• Do backface culling with same sign test

• Draw front to back, and…

– Keep track of partially filled spans

– Only render parts that fall into spans that are still open

– Quit when the image is filled

• Clip the BSP tree against the portions of space that you can see!

– Called portals

– Initial view volume is entire viewing frustum

– When you look through a doorway, intersect current volume with
“beam” defined by doorway

– Skip a BSP node if it doesn’t intersect the current view volume

– Much faster than clipping every polygon

22Baoquan Chen 2019

Clipping BSP Trees

• Suppose you have all n polygons in a BSP tree, and it’s
time to clip them for rendering.

• Clip the tree to the view frustum!
– This is an intersection operation between the tree of

polygons and a BSP tree representing the frustum

– An O(log n) operation, while clipping all n polygons is O(n)

• Algorithm is a bit involved, but straightforward
– merge the polygon tree into the frustum tree

– large parts of the polygon tree lie on known sides of the
splits in the frustum tree, and thus need never be traversed

23Baoquan Chen 2019

Clipping Using Spatial Data Structures

• The data structures we used to accelerate ray tracing will work here too!

• In each case, the goal is to accept or reject whole sets of polygons.

• The O(n) task becomes O(log n)

• Scene must be (mostly) fixed, to amortize cost of building the data structure

– terrain fly-through

– gaming

• Off-screen stuff can swap out!

Hierarchical bounding volumes Octrees

