

Ray Casting

- A very flexible visibility algorithm loop y
loop x
shoot ray from eye point through pixel (x, y) into scene
intersect with all surfaces, find first one the ray hits
shade that surface point to compute pixel (x, y)'s color

A Simple Ray Caster Program

Raycast()
for each pixel x, y
color(pixel) $=$ Trace(ray_through_pixel(x,y))
Trace(ray)
// fire a ray, return RGB radiance
// of light traveling backward along it
object_point = Closest_intersection(ray)
if object_point return S̄hade(object_point, ray)
else return Background_Color
Closest_intersection(ray)
for each surface in scene calc_intersection(ray, surface)
return the closest point of intersection to viewer
(also return other info about that point, e.g., surface normal, material properties, etc.)

Shade(point, ray) // return radiance of light leaving
// point in opposite of ray direction
calculate surface normal vector use Phong illumination formula (or something similar) to calculate contributions of each light source

Ray Casting

- This can be easily generalized to give recursive ray tracing, that will be discussed later
- calc_intersection (ray, surface) is the most important operation
- compute not only coordinates, but also geometric or appearance attributes at the intersection point

Ray-Surface Intersections

- How to represent a ray?
-A ray is $p+t d$: p is ray origin, d the direction
$-t=0$ at origin of ray, $t>0$ in positive direction of ray
-typically assume ||d||=1
-p and d are typically computed in world space

Ray-Surface Intersections

- Surfaces can be represented by:
- Implicit functions: $\quad f(x)=0$
- Parametric functions: $\quad x=g(u, v)$

Parametric

$$
\begin{aligned}
& \mathbf{x}(\mathbf{u})=\mathbf{r} \cos (\mathbf{u}) \\
& \mathbf{y}(\mathbf{u})=\mathbf{r} \sin (\mathbf{u})
\end{aligned}
$$

Implicit

$$
F(x, y)=x^{2}+y^{2}-\mathbf{r}^{2}
$$

Ray-Surface Intersections

- Compute Intersections:
- Substitute ray equation for x
- Find roots
- Implicit: $\quad f(\mathrm{p}+t \mathrm{~d})=0$
» one equation in one unknown - univariate root finding
- Parametric: $\quad \mathrm{p}+t \mathrm{~d}-g(u, v)=0$
» three equations in three unknowns $(t, u, v)-$ multivariate root finding
- For univariate polynomials, use closed form solution otherwise use numerical root finder

The Devil's in the Details

- General case: non-linear root finding problem
- Ray casting is simplified using object-oriented techniques
- Implement one intersection method for each type of surface primitive
- Each surface handles its own intersection
- Some surfaces yield closed form solutions
- quadrics: spheres, cylinders, cones, elipsoids, etc...)
- Polygons
-tori, superquadrics, low-order spline surface patches

Ray-Sphere Intersection

- Ray-sphere intersection is an easy case
- A sphere's implicit function is: $x^{2}+y^{2}+z^{2}-r^{2}=0$ if sphere at origin
- The ray equation is:

$$
\begin{aligned}
& x=p_{x}+t d_{x} \\
& y=p_{y}+t d_{y} \\
& z=p_{z}+t d_{z}
\end{aligned}
$$

- Substitution gives: $\left(p_{x}+t d_{x}\right)^{2}+\left(p_{y}+t d_{y}\right)^{2}+\left(p_{z}+t d_{z}\right)^{2}-r^{2}=0$
- A quadratic equation in t.
- Solve the standard way: $A=d_{x}^{2}+d_{y}^{2}+d_{z}^{2}=1$ (unit vector)

$$
B=2\left(p_{x} d_{x}+p_{y} d_{y}+p_{z} d_{z}\right)
$$

$$
A t^{2}+B t+C=0
$$

$$
C=p_{x}{ }^{2}+p_{y}^{2}+p_{z}^{2}-r^{2}
$$

- Quadratic formula has two roots: $t=\left(-B \pm \operatorname{sqrt}\left(B^{2}-4 C\right)\right) / 2$
- which correspond to the two intersection points
- negative discriminant means ray misses sphere

Ray-Polygon Intersection

- Assuming we have a planar polygon
- first, find intersection point of ray with plane
- then check if that point is inside the polygon
- Latter step is a point-in-polygon test in 3-D:
- inputs: a point x in 3-D and the vertices of a polygon in 3D
- output: INSIDE or OUTSIDE
- problem can be reduced to point-in-polygon test in 2-D
- Point-in-polygon test in 2-D:
- easiest for triangles
- easy for convex n-gons
- harder for concave polygons
- most common approach: subdivide all polygons into triangles
- for optimization tips, see article by Haines in the book Graphics Gems IV

Ray-Plane Intersection

- Ray: $x=p+t d$
- where p is ray origin, d is ray direction. we'll assume \|d\|=1 (this simplifies the algebra later)
$-x=(x, y, z)$ is point on ray if $t>0$
- Plane: $(x-q) \bullet n=0$
- where q is reference point on plane, n is plane normal. (some might assume ||n||=1; we won't)
$-x$ is point on plane
- if what you're given is vertices of a polygon
» compute n with cross product of two (non-parallel) edges
» use one of the vertices for q
- rewrite plane equation as $x \bullet n+D=0$
» equivalent to the familiar formula $A x+B y+C z+D=0$, where $(A, B, C)=\mathrm{n}, D=-\mathrm{q} \cdot \mathrm{n}$
» fewer values to store

Ray-Plane Intersection

- Steps:
- substitute ray formula into plane eqn, yielding 1 equation in 1 unknown (t).
- solution: $t=-(\mathrm{p} \bullet \mathrm{n}+D) /(\mathrm{d} \bullet \mathrm{n})$
» note: if $d \bullet n=0$ then ray and plane are parallel REJECT
» note: if $t<0$ then intersection with plane is behind ray origin - REJECT
- compute t, plug it into ray equation to compute point x on plane

Projecting A Polygon from 3-D to 2-D

- Point-in-polygon testing is simpler and faster if we do it in 2-D
- The simplest projections to compute are to the $x y, y z$, or $z x$ planes
- If the polygon has plane equation $A x+B y+C z+D=0$, then
» $|A|$ is proportional to projection of polygon in $y z$ plane
» $|B|$ is proportional to projection of polygon in $z x$ plane
" $|C|$ is proportional to projection of polygon in $x y$ plane
» Example: the plane $z=3$ has $(A, B, C, D)=(0,0,1,-3)$, so $|C|$ is the largest and $x y$ projection is best. We should do point-in-polygon testing using x and y coords.
- In other words, project into the plane for which the perpendicular component of the normal vector n is largest

Projecting A Polygon from 3-D to 2-D

- Optimization:
-We should optimize the inner loop (ray-triangle intersection testing) as much as possible
- We can determine which plane to project to, for each triangle, as a preprocess
- Point-in-polygon testing in 2-D is still an expensive operation
- Point-in-rectangle is a special case

Interpolated Shading for Ray Casting

- Suppose we know colors or normals at vertices
- How do we compute the color/normal of a specified point inside?

- Color depends on distance to each vertex
- How to do linear interpolation between 3 points?
- Answer: barycentric coordinates
- Useful for ray-triangle intersection testing too!

Barycentric Coordinates in 1-D

- Linear interpolation between colors C_{0} and C_{1} by t

$$
\mathbf{C}=(\mathbf{1}-t) \mathbf{C}_{\mathbf{0}}+t \mathbf{C}_{\mathbf{1}}
$$

- We can rewrite this as

$$
\begin{aligned}
& \mathbf{C}=\alpha \mathbf{C}_{\mathbf{0}}+\beta \mathbf{C}_{\mathbf{1}} \quad \text { where } \alpha+\beta=1 \\
& \mathbf{C} \text { is between } \mathbf{C}_{\mathbf{0}} \text { and } \mathbf{C}_{\mathbf{1}} \Leftrightarrow \alpha, \beta \in[0,1]
\end{aligned}
$$

- Geometric intuition:
- We are weighting each vertex by ratio of distances (or areas)

- α and β are called barycentric coordinates

Barycentric Coordinates in 2-D

- Bilinear interpolation: 4 points instead of 2

Barycentric Coordinates in 2-D

- Now suppose we have 3 points instead of 2

- Define three barycentric coordinates: α, β, γ
$\mathbf{C}=\alpha \mathbf{C}_{\mathbf{0}}+\beta \mathbf{C}_{1}+\gamma \mathbf{C}_{\mathbf{2}}$ where $\alpha+\beta+\gamma=1$
\mathbf{C} is inside $\mathbf{C}_{0} \mathbf{C}_{\mathbf{1}} \mathbf{C}_{2} \Leftrightarrow \alpha, \beta, \gamma \in[0,1]$
- How to define α, β, and γ ?

Barycentric Coordinates for a Triangle

- Define barycentric coordinates to be ratios of triangle areas

$$
\begin{aligned}
& \alpha=\frac{\operatorname{Area}\left(\mathbf{C C}_{1} \mathbf{C}_{2}\right)}{\operatorname{Area}\left(\mathbf{C}_{0} \mathbf{C}_{1} \mathbf{C}_{2}\right)} \\
& \beta=\frac{\operatorname{Area}\left(\mathbf{C}_{0} \mathbf{C C}_{2}\right)}{\operatorname{Area}\left(\mathbf{C}_{0} \mathbf{C}_{1} \mathbf{C}_{2}\right)} \\
& \gamma=\frac{\operatorname{Area}\left(\mathbf{C}_{0} \mathbf{C}_{1} \mathbf{C}\right)}{\operatorname{Area}\left(\mathbf{C}_{0} \mathbf{C}_{1} \mathbf{C}_{2}\right)}=1-\alpha-\beta
\end{aligned}
$$

Computing Area of a Triangle

- in 3-D

- Area(ABC) = parallelogram area $/ \mathbf{2}=\|(\mathrm{B}-\mathrm{A}) \times(\mathrm{C}-\mathrm{A})| | / 2$
- faster: project to $x y, y z$, or $z x$, use 2D formula
- in 2-D
$-\operatorname{Area}(x y-p r o j e c t i o n(\mathbf{A B C}))=\left[\left(b_{x}-a_{x}\right)\left(c_{y}-a_{y}\right)-\left(c_{x}-a_{x}\right)\left(b_{y}-a_{y}\right)\right] / 2$ project A, B, C to $x y$ plane, take z component of cross product
- positive if ABC is CCW (counterclockwise)

Computing Area of a Triangle - Algebra

That short formula,

$$
\operatorname{Area}(\mathbf{A B C})=\left[\left(b_{x}-a_{x}\right)\left(c_{y}-a_{y}\right)-\left(c_{x}-a_{x}\right)\left(b_{y}-a_{y}\right)\right] / 2
$$

Where did it come from?

$$
\begin{aligned}
& \operatorname{Area}(A B C)=\frac{1}{2}\left|\begin{array}{ccc}
a_{x} & b_{x} & c_{x} \\
a_{y} & b_{y} & c_{y} \\
1 & 1 & 1
\end{array}\right| \\
& =\left(\left|\begin{array}{ll}
b_{x} & c_{x} \\
b_{y} & c_{y}
\end{array}\right|-\left|\begin{array}{cc}
a_{x} & c_{x} \\
a_{y} & c_{y}
\end{array}\right|+\left|\begin{array}{cc}
a_{x} & b_{x} \\
a_{y} & b_{y}
\end{array}\right| \frac{\dot{y}}{)^{-}}\right. \\
& =\left(b_{x} c_{y}-c_{x} b_{y}+c_{x} a_{y}-a_{x} c_{y}+c_{x} a_{y}-a_{x} c_{y}\right) / 2
\end{aligned}
$$

The short \& long formulas above agree.
Short formula better because fewer multiplies. Speed is important! Can we explain the formulas geometrically?

Another Explanation

$\operatorname{Area}(\mathbf{A B C})=\left[\left(b_{x}-a_{x}\right)\left(c_{y}-a_{y}\right)-\left(c_{x}-a_{x}\right)\left(b_{y}-a_{y}\right)\right] / 2$
is a sum of rectangle areas, divided by 2.

Uses for Barycentric Coordinates

- Point-in-triangle testing!
- point is in triangle iff α, β, γ the same sign
- note similarity to standard point-inpolygon methods that use tests of form $a_{i} x+b_{i} y+c_{i}<0$ for each edge i

- Can use barycentric coordinates to interpolate any quantity
- color interpolation - Gouraud shading
- normal interpolation - realizing Phong Shading
- (s, t) texture coordinate interpolation - texture mapping

Ray Tracing

1. (Recursive) Ray Tracing
2. Antialiasing
3. Motion Blur
4. Distribution Ray Tracing
5. other fancy stuff

Assumptions

- Simple shading (typified by OpenGL, z-buffering, and Phong illumination model) assumes:
- direct illumination (light leaves source, bounces at most once, enters eye)
- no shadows
- opaque surfaces
- point light sources
- sometimes fog
- (Recursive) ray tracing relaxes that, simulating:
- specular reflection
- shadows
- transparent surfaces (transmission with refraction)
- sometimes indirect illumination (a.k.a. global illumination)
- sometimes area light sources
- sometimes fog

Ray Types for Ray Tracing

- We'll distinguish four ray types:
- Eye rays: originating at the eye
- Shadow rays: from surface point toward light source
- Reflection rays: from surface point in mirror direction
- Transmission rays: from surface point in refracted direction

Ray Tracing Algorithm

- send ray from eye through each pixel
- compute point of closest intersection with a scene surface
- shade that point by computing shadow rays
- spawn reflected and refracted rays, repeat

Specular Reflection Rays

- An eye ray hits a shiny surface
- We know the direction from which a specular reflection would come, based on the surface normal
- Fire a ray in this reflected direction
- The reflected ray is treated just like an eye ray: it hits surfaces and spawns new rays
- Light flows in the direction opposite to the rays (towards the eye), is used to calculate shading
- It's easy to calculate the reflected ray direction
Note: arrowheads show the direction in which we're tracing the rays, not the direction the light travels.

Specular Transmission Rays

- To add transparency:
- Add a term for light that's coming from within the object
- These rays are refracted (bent) when passing through a boundary between two media with different refractive indices
- When a ray hits a transparent surface fire a transmission ray into the object at the proper refracted angle
- If the ray passes through the other side of the object then it bends again (the other way)

Refraction

- Refraction:
-The bending of light due to its different velocities through different materials
- rays bend toward the normal when going from sparser to denser materials (e.g. air to water), away from normal in opposite case

Refraction

- Refractive index:
- Light travels at speed c / n in a material of refractive index n
» c is the speed of light in a vacuum
" c varies with wavelength, hence rainbows and prisms
-Use Snell's law $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$ to derive refracted ray direction
» note: ray dir. can be computed without trig functions (only sqrts)

MATERIAL air/vacuum	INDEX OF REFRACTION water
glass diamond 2.4	about 1.53

Ray Hierarchy

RAY PATHS (BACKWARD)
\longrightarrow Shadow Ray
\longrightarrow Other Ray

RAY TREE

Ray Casting vs. Ray Tracing

Ray Casting -- 1 bounce

Ray Tracing -- 2 bounce

Ray Tracing -- $\mathbf{3}$ bounce

Review: A Simple Ray Caster Program

Raycast()
// generate a picture
for each pixel x, y color(pixel) $=$ Trace(ray_through_pixel(x,y))

Trace(ray)
// fire a ray, return RGB radiance
// of light traveling backward along it
object_point = Closest_intersection(ray)
if object_point return S̄hade(object_point, ray)
else return Background_Color
Closest_intersection(ray)
for each surface in scene calc_intersection(ray, surface)
return the closest point of intersection to viewer
(also return other info about that point, e.g., surface normal, material properties, etc.)

Shade(point, ray) // return radiance of light leaving
// point in opposite of ray direction
calculate surface normal vector use Phong illumination formula (or something similar) to calculate contributions of each light source

From a Ray Caster to a Ray Tracer

Shade(point, ray) radiance = black;
for each light source
shadow_ray = calc_shadow_ray(point,light)
if !in_shadow(shadow_ray,light)
radiance += phong_illumination(point,ray,light)
if material is specularly reflective
radiance += spec_reflectance * Trace(reflected_ray(point,ray)))
if material is specularly transmissive
radiance += spec_transmittance * Trace(refracted_ray(point,ray)))
return radiance

Problem with Simple Ray Tracing: Aliasing

Aliasing

- Ray tracing shoots one ray per pixel
- But a pixel represents an area; one ray samples only one point with the area; an area consists infinite number of points
- These points may not all have the same color
-This leads to aliasing
» jaggies
» moire patterns
- How do we fix this problem?
- Recall antialiasing in texture mapping

Antialiasing: Supersampling

- We talked about two antialiasing methods
- Supersampling
- Pre-filtering (MIP-mapping)
- Here we use supersampling
-Fire more than one ray for each pixel (e.g., a $3 x 3$ grid of rays)
- Average the results using a filter (or some kind of filter)

Supersampling

Antialiasing: Adaptive Supersampling

- Supersampling can be done adaptively
- divide pixel into 2×2 grid, trace 5 rays (4 at corners, 1 at center)
- if the colors are similar then just use their average
- otherwise recursively subdivide each cell of grid
- keep going until each 2×2 grid is close to uniform or limit is reached
- filter the result
- Behavior of adaptive supersampling
- Areas with fairly constant appearance are sparsely sampled
- Areas with lots of variability are heavily sampled
- Issues
- even with massive supersampling visible aliasing is possible when the sampling grid interacts with regular structures
- problem is, objects tend to be almost aligned with sampling grid
- noticeable beating, moire patterns, etc... are possible

Antialiasing: Stochastic Adaptive Supersampling

- Adaptive supersampling can be done stochasticly
- instead of a regular grid, subsample randomly (or pseudo)
- aliasing is replaced by less visually annoying noise!
- adaptively sample statistically
- keep taking samples until the color estimates converge
- How?
» jittering: perturb a regular grid
» Jitter pattern can be pre-generated (designed)
» this can be employed in OpenGL rendering as well

Temporal Aliasing

- Aliasing happens in time as well as space
- the sampling rate is the frame rate, 30 Hz for NTSC video, 24 Hz for film
- fast moving objects move large distances between frames
- if we point-sample time, objects have a jerky look
- To avoid temporal aliasing we need to filter in time too
- so compute frames at 120 Hz and average them together (with appropriate weights)?
- fast-moving objects become blurred streaks
- Real media (film and video) automatically do temporal anti-aliasing
- photographic film integrates over the exposure time
- video cameras have persistence (memory)
- this shows up as motion blur in the photographs

Motion Blur

- Apply stochastic sampling to time as well as space
- Assign a time as well as an image position to each ray
- The result is still-frame motion blur and smooth animation
- This is an example of distribution ray tracing

The Classic Example of Motion Blur

- From Foley et. al. Plate III. 16
- Rendered using distribution ray tracing at 4096x3550 pixels, 16 samples per pixel.
- Note motion-blurred reflections and shadows with penumbrae cast by extended light sources.

Distribution Ray Tracing

- We've done
- distribute rays throughout a pixel to get spatial antialiasing
- distribute rays in time to get temporal antialiasing (motion blur)
- We can
- distribute rays in reflected ray direction to simulate gloss
- distribute rays across area light source to simulate penumbras (soft shadows)
- distribute rays throughout lens area to simulate depth of field
- distribute rays across hemisphere to simulate diffuse interreflection (radiosity)
- a.k.a. "distributed ray tracing" or stochastic ray tracing
- powerful idea! (but can get slow)

Gloss and Highlights

- Simple ray tracing spawns only one reflected ray
- But Phong illumination models a cone of rays
- Produces fuzzy highlights
- Change fuzziness (cone width) by varying the shininess parameter
- The solution is to spawn a cluster of rays
- Again, stochastic sampling can be used
- Stochastically sample rays within the cone
- Sampling probability drops off sharply away from the specular angle
- Highlights can be soft, blurred reflections of other objects

Soft Shadows

- Point light sources produce sharp shadow edges
- the point is either shadowed or not
- only one ray is required
- With an extended light source the surface point may be partially visible to it (partial eclipse)
- only part of the light from the sources reaches the point
- the shadow edges are softer
- the transition region is the penumbra
- Distribution ray tracing can simulate this:
- fire shadow rays from random points on the source
- weight them by the brightness
- the resulting shading depends on the fraction of the obstructed shadow rays

Soft Shadows

fewer rays, more noise
more rays, less noise

Depth of Field

- The pinhole camera model only approximates real optics
- real cameras have lenses with focal lengths
- only one plane is truly in focus
- points away from the focus project as disks
- the further away from the focus the larger the disk
- the range of distance that appear in focus is the depth of field
- simulate this using stochastic sampling through different parts of the lens

