

Ray Casting

 A very flexible visibility algorithm loop y loop x shoot ray from eye point through pixel (x,y) into scene intersect with all surfaces, find first one the ray hits shade that surface point to compute pixel (x,y)'s color

A Simple Ray Caster Program

```
Raycast()
                    // generate a picture
   for each pixel x,y
       color(pixel) = Trace(ray through pixel(x,y))
                    // fire a ray, return RGB radiance
Trace(ray)
                              // of light traveling backward along it
   object_point = Closest_intersection(ray)
   if object point return Shade(object point, ray)
   else return Background Color
Closest intersection(ray)
   for each surface in scene
          calc_intersection(ray, surface)
   return the closest point of intersection to viewer
   (also return other info about that point, e.g., surface normal, material
      properties, etc.)
                   // return radiance of light leaving
Shade(point, ray)
                              // point in opposite of ray direction
   calculate surface normal vector
   use Phong illumination formula (or something similar)
   to calculate contributions of each light source
```

Ray Casting

- This can be easily generalized to give recursive ray tracing, that will be discussed later
- calc_intersection (ray, surface) is the most important operation
 - compute not only coordinates, but also geometric or appearance attributes at the intersection point

Ray-Surface Intersections

- How to represent a ray?
 - -A ray is p+td: p is ray origin, d the direction
 - -t=0 at origin of ray, t>0 in positive direction of ray
 - -typically assume ||d||=1
 - -p and d are typically computed in world space

Ray-Surface Intersections

- Surfaces can be represented by:
 - -Implicit functions: f(x) = 0
 - Parametric functions: x = g(u,v)

Parametric

$$x(u) = r \cos(u)$$

 $y(u) = r \sin(u)$

Implicit

$$F(x,y) = x^2 + y^2 - r^2$$

Ray-Surface Intersections

- Compute Intersections:
 - Substitute ray equation for x
 - Find roots
 - -Implicit: f(p + td) = 0
 - » one equation in one unknown univariate root finding
 - Parametric: p + td g(u,v) = 0
 - » three equations in three unknowns (t,u,v) multivariate root finding
 - For univariate polynomials, use closed form solution otherwise use numerical root finder

The Devil's in the Details

- General case: non-linear root finding problem
- Ray casting is simplified using object-oriented techniques
 - Implement one intersection method for each type of surface primitive
 - Each surface handles its own intersection
- Some surfaces yield closed form solutions
 - quadrics: spheres, cylinders, cones, elipsoids, etc...)
 - Polygons
 - tori, superquadrics, low-order spline surface patches

Ray-Sphere Intersection

- Ray-sphere intersection is an easy case
- A sphere's implicit function is: $x^2+y^2+z^2-r^2=0$ if sphere at origin
- The ray equation is: $x = p_x + td_x$ $y = p_y + td_y$ $z = p_z + td_z$
- Substitution gives: $(p_x + td_x)^2 + (p_y + td_y)^2 + (p_z + td_z)^2 r^2 = 0$
- A quadratic equation in t.
- Solve the standard way: $A = d_x^2 + d_y^2 + d_z^2 = 1$ (unit vector) $B = 2(p_x d_x + p_y d_y + p_z d_z)$

$$At^2+Bt+C=0$$
 $C = p_x^2+p_y^2+p_z^2-r^2$

- Quadratic formula has two roots: t=(-B±sqrt(B²-4C))/2
 - which correspond to the two intersection points
 - negative discriminant means ray misses sphere

Ray-Polygon Intersection

- Assuming we have a planar polygon
 - first, find intersection point of ray with plane
 - then check if that point is inside the polygon
- Latter step is a point-in-polygon test in 3-D:
 - inputs: a point x in 3-D and the vertices of a polygon in 3D
 - output: INSIDE or OUTSIDE
 - problem can be reduced to point-in-polygon test in 2-D
- Point-in-polygon test in 2-D:
 - easiest for triangles
 - easy for convex n-gons
 - harder for concave polygons
 - most common approach: subdivide all polygons into triangles
 - for optimization tips, see article by Haines in the book *Graphics Gems IV*

Ray-Plane Intersection

- Ray: x=p+td
 - where p is ray origin, d is ray direction. we'll assume ||d||=1 (this simplifies the algebra later)
 - -x=(x,y,z) is point on ray if t>0
- Plane: (x-q)•n=0
 - where q is reference point on plane, n is plane normal. (some might assume ||n||=1; we won't)
 - x is point on plane
 - if what you're given is vertices of a polygon
 - » compute n with cross product of two (non-parallel) edges
 - » use one of the vertices for q
 - rewrite plane equation as $x \cdot n+D=0$
 - » equivalent to the familiar formula Ax+By+Cz+D=0, where (A,B,C)=n, $D=-q \bullet n$
 - » fewer values to store

Ray-Plane Intersection

• Steps:

- substitute ray formula into plane eqn, yielding 1 equation in 1 unknown (t).
- solution: $t = -(p \cdot n + D)/(d \cdot n)$
 - » note: if d•n=0 then ray and plane are parallel -REJECT
 - » note: if t<0 then intersection with plane is behind ray origin - REJECT
- compute t, plug it into ray equation to compute point x on plane

Projecting A Polygon from 3-D to 2-D

- Point-in-polygon testing is simpler and faster if we do it in 2-D
 - The simplest projections to compute are to the xy, yz, or zx planes
 - If the polygon has plane equation Ax+By+Cz+D=0, then
 - » |A| is proportional to projection of polygon in yz plane
 - » |B| is proportional to projection of polygon in zx plane
 - » | C | is proportional to projection of polygon in xy plane
 - » Example: the plane z=3 has (A,B,C,D)=(0,0,1,-3), so |C| is the largest and xy projection is best. We should do point-in-polygon testing using x and y coords.
 - In other words, project into the plane for which the perpendicular component of the normal vector n is largest

Projecting A Polygon from 3-D to 2-D

- Optimization:
 - We should optimize the inner loop (ray-triangle intersection testing) as much as possible
 - We can determine which plane to project to, for each triangle, as a preprocess
- Point-in-polygon testing in 2-D is still an expensive operation
- Point-in-rectangle is a special case

Interpolated Shading for Ray Casting

- Suppose we know colors or normals at vertices
 - How do we compute the color/normal of a specified point inside?

- Color depends on distance to each vertex
 - How to do linear interpolation between 3 points?
 - Answer: barycentric coordinates
- Useful for ray-triangle intersection testing too!

Barycentric Coordinates in 1-D

Linear interpolation between colors C₀ and C₁ by t

$$\mathbf{C} = (1 - t)\mathbf{C}_0 + t\mathbf{C}_1$$

We can rewrite this as

$$\mathbf{C} = \alpha \mathbf{C_0} + \beta \mathbf{C_1}$$
 where $\alpha + \beta = 1$

C is between C_0 and $C_1 \Leftrightarrow \alpha, \beta \in [0,1]$

- Geometric intuition:
 - We are weighting each vertex by ratio of distances (or areas)

• α and β are called *barycentric* coordinates

Barycentric Coordinates in 2-D

Bilinear interpolation: 4 points instead of 2

$$\mathbf{C} = (1 - dx)(1 - dy)\mathbf{C}_0 + (dx(1 - dy)\mathbf{C}_1 + (1 - dx)dy\mathbf{C}_2 + dxdy\mathbf{C}_3$$

$$\alpha \qquad \beta \qquad \gamma \qquad \varphi$$

Barycentric Coordinates in 2-D

Now suppose we have 3 points instead of 2

• Define three barycentric coordinates: α , β , γ

$$\mathbf{C} = \alpha \mathbf{C_0} + \beta \mathbf{C_1} + \gamma \mathbf{C_2}$$
 where $\alpha + \beta + \gamma = 1$
 \mathbf{C} is inside $\mathbf{C_0} \mathbf{C_1} \mathbf{C_2} \Leftrightarrow \alpha, \beta, \gamma \in [0, 1]$

• How to define α , β , and γ ?

Barycentric Coordinates for a Triangle

Define barycentric coordinates to be ratios of triangle areas

$$\alpha = \frac{Area(\mathbf{C}\mathbf{C}_{1}\mathbf{C}_{2})}{Area(\mathbf{C}_{0}\mathbf{C}_{1}\mathbf{C}_{2})}$$

$$\beta = \frac{Area(\mathbf{C}_{0}\mathbf{C}\mathbf{C}_{2})}{Area(\mathbf{C}_{0}\mathbf{C}_{1}\mathbf{C}_{2})}$$

$$\gamma = \frac{Area(\mathbf{C}_{0}\mathbf{C}_{1}\mathbf{C}_{2})}{Area(\mathbf{C}_{0}\mathbf{C}_{1}\mathbf{C}_{2})} = 1 - \alpha - \beta$$

Computing Area of a Triangle

• in 3-D

- -Area(ABC) = parallelogram area / 2 = ||(B-A) x (C-A)||/2
- faster: project to xy, yz, or zx, use 2D formula
- in 2-D
 - Area(xy-projection(ABC)) = $[(b_x-a_x)(c_y-a_y) (c_x-a_x)(b_y-a_y)]/2$ project A,B,C to xy plane, take z component of cross product
 - positive if ABC is CCW (counterclockwise)

Computing Area of a Triangle - Algebra

That short formula,

Area(ABC) =
$$[(b_x-a_x)(c_y-a_y) - (c_x-a_x)(b_y-a_y)]/2$$

Where did it come from?

$$Area(ABC) = \frac{1}{2} \begin{vmatrix} a_{x} & b_{x} & c_{x} \\ a_{y} & b_{y} & c_{y} \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \left(\begin{vmatrix} b_{x} & c_{x} \\ b_{y} & c_{y} \end{vmatrix} - \begin{vmatrix} a_{x} & c_{x} \\ a_{y} & c_{y} \end{vmatrix} + \begin{vmatrix} a_{x} & b_{x} \\ a_{y} & b_{y} \end{vmatrix} \right) \stackrel{?}{>} 2$$

$$= \left(b_{x} c_{y} - c_{x} b_{y} + c_{x} a_{y} - a_{x} c_{y} + c_{x} a_{y} - a_{x} c_{y} \right) / 2$$

The short & long formulas above agree.

Short formula better because fewer multiplies. Speed is important!

Can we explain the formulas geometrically?

Another Explanation

Area(ABC) = $[(b_x-a_x)(c_y-a_y) - (c_x-a_x)(b_y-a_y)]/2$ is a sum of rectangle areas, divided by 2.

it works!

since triangle area = base*height/2

Uses for Barycentric Coordinates

- Point-in-triangle testing!
 - point is in triangle **iff** α , β , γ the same sign
 - note similarity to standard point-inpolygon methods that use tests of form a_ix+b_iy+c_i<0 for each edge i

- Can use barycentric coordinates to interpolate any quantity
 - color interpolation Gouraud shading
 - normal interpolation realizing Phong Shading
 - (s,t) texture coordinate interpolation texture mapping

Ray Tracing

- 1. (Recursive) Ray Tracing
- 2. Antialiasing
- 3. Motion Blur
- 4. Distribution Ray Tracing
- 5. other fancy stuff

Assumptions

- Simple shading (typified by OpenGL, z-buffering, and Phong illumination model) assumes:
 - direct illumination (light leaves source, bounces at most once, enters eye)
 - no shadows
 - opaque surfaces
 - point light sources
 - sometimes fog
- (Recursive) ray tracing relaxes that, simulating:
 - specular reflection
 - shadows
 - transparent surfaces (transmission with refraction)
 - sometimes indirect illumination (a.k.a. global illumination)
 - sometimes area light sources
 - sometimes fog

Ray Types for Ray Tracing

- We'll distinguish four ray types:
 - Eye rays: originating at the eye
 - Shadow rays: from surface point toward light source
 - Reflection rays: from surface point in mirror direction
 - Transmission rays: from surface point in refracted direction

Ray Tracing Algorithm

- send ray from eye through each pixel
- compute point of closest intersection with a scene surface
- shade that point by computing shadow rays
- spawn reflected and refracted rays, repeat

Specular Reflection Rays

Note: arrowheads show the direction in which we're *tracing the rays*, not the direction the light travels.

- An eye ray hits a shiny surface
 - We know the direction from which a specular reflection would come, based on the surface normal
 - Fire a ray in this reflected direction
 - The reflected ray is treated just like an eye ray: it hits surfaces and spawns new rays
 - Light flows in the direction opposite to the rays (towards the eye), is used to calculate shading
 - It's easy to calculate the reflected ray direction

Specular Transmission Rays

- To add transparency:
 - Add a term for light that's coming from within the object
 - These rays are refracted (bent) when passing through a boundary between two media with different refractive indices
 - When a ray hits a transparent surface fire a transmission ray into the object at the proper refracted angle
 - If the ray passes through the other side of the object then it bends again (the other way)

Refraction

• Refraction:

- The bending of light due to its different velocities through different materials
- rays bend toward the normal when going from sparser to denser materials (e.g. air to water), away from normal in opposite case

Refraction

- Refractive index:
 - Light travels at speed c/n in a material of refractive index n
 - » c is the speed of light in a vacuum
 - » c varies with wavelength, hence rainbows and prisms
 - –Use Snell's law $n_1 \sin \theta_1 = n_2 \sin \theta_2$ to derive refracted ray direction

» note: ray dir. can be computed without trig functions (only sqrts)

MATERIAL	INDEX OF REFRACTION
air/vacuum	1
water	1.33
glass	about 1.5
diamond 2.4	

Ray Hierarchy

RAY PATHS (BACKWARD)

→ Shadow Ray

→ Other Ray

Ray Casting vs. Ray Tracing

Ray Casting -- 1 bounce

Ray Tracing -- 2 bounce

Ray Tracing -- 3 bounce

Review: A Simple Ray Caster Program

```
Raycast()
                    // generate a picture
   for each pixel x,y
       color(pixel) = Trace(ray through pixel(x,y))
                    // fire a ray, return RGB radiance
Trace(ray)
                              // of light traveling backward along it
   object_point = Closest_intersection(ray)
   if object point return Shade(object point, ray)
   else return Background Color
Closest intersection(ray)
   for each surface in scene
          calc_intersection(ray, surface)
   return the closest point of intersection to viewer
   (also return other info about that point, e.g., surface normal, material
      properties, etc.)
                   // return radiance of light leaving
Shade(point, ray)
                              // point in opposite of ray direction
   calculate surface normal vector
   use Phong illumination formula (or something similar)
   to calculate contributions of each light source
```

From a Ray Caster to a Ray Tracer

Problem with Simple Ray Tracing: Aliasing

Aliasing

- Ray tracing shoots one ray per pixel
- But a pixel represents an area; one ray samples only one point with the area; an area consists *infinite* number of points
 - These points may not all have the same color
 - -This leads to *aliasing*
 - » jaggies
 - » moire patterns
- How do we fix this problem?
 - Recall antialiasing in texture mapping

Antialiasing: Supersampling

- We talked about two antialiasing methods
 - Supersampling
 - Pre-filtering (MIP-mapping)
- Here we use supersampling
 - Fire more than one ray for each pixel (e.g., a 3x3 grid of rays)
 - Average the results using a filter (or some kind of filter)

Supersampling

Antialiasing: Adaptive Supersampling

- Supersampling can be done adaptively
 - divide pixel into 2x2 grid, trace 5 rays (4 at corners, 1 at center)
 - if the colors are similar then just use their average
 - otherwise recursively subdivide each cell of grid
 - keep going until each 2x2 grid is close to uniform or limit is reached
 - filter the result
- Behavior of adaptive supersampling
 - Areas with fairly constant appearance are sparsely sampled
 - Areas with lots of variability are heavily sampled
- Issues
 - even with massive supersampling visible aliasing is possible when the sampling grid interacts with regular structures
 - problem is, objects tend to be almost aligned with sampling grid
 - noticeable beating, moire patterns, etc... are possible

Antialiasing: Stochastic Adaptive Supersampling

- Adaptive supersampling can be done stochasticly
 - instead of a regular grid, subsample randomly (or pseudo)
 - aliasing is replaced by less visually annoying noise!
 - adaptively sample statistically
 - keep taking samples until the color estimates converge
 - How?
 - » jittering: perturb a regular grid
 - » Jitter pattern can be pre-generated (designed)
 - » this can be employed in OpenGL rendering as well

Temporal Aliasing

- Aliasing happens in time as well as space
 - the sampling rate is the frame rate, 30Hz for NTSC video, 24Hz for film
 - fast moving objects move large distances between frames
 - if we point-sample time, objects have a jerky look
- To avoid temporal aliasing we need to filter in time too
 - so compute frames at 120Hz and average them together (with appropriate weights)?
 - fast-moving objects become blurred streaks
- Real media (film and video) automatically do temporal anti-aliasing
 - photographic film integrates over the exposure time
 - video cameras have persistence (memory)
 - this shows up as *motion blur* in the photographs

Motion Blur

- Apply stochastic sampling to time as well as space
- Assign a time as well as an image position to each ray
- The result is still-frame motion blur and smooth animation
- This is an example of distribution ray tracing

The Classic Example of Motion Blur

- From Foley et. al. Plate III.16
- Rendered using distribution ray tracing at 4096x3550 pixels, 16 samples per pixel.
- Note motion-blurred reflections and shadows with penumbrae cast by extended light sources.

Distribution Ray Tracing

- We've done
 - distribute rays throughout a pixel to get spatial antialiasing
 - distribute rays in time to get temporal antialiasing (motion blur)
- We can
 - distribute rays in reflected ray direction to simulate gloss
 - distribute rays across area light source to simulate penumbras (soft shadows)
 - distribute rays throughout lens area to simulate depth of field
 - distribute rays across hemisphere to simulate diffuse interreflection (radiosity)
- a.k.a. "distributed ray tracing" or stochastic ray tracing
- powerful idea! (but can get slow)

Gloss and Highlights

- Simple ray tracing spawns only one reflected ray
- But Phong illumination models a cone of rays
 - Produces fuzzy highlights
 - Change fuzziness (cone width) by varying the shininess parameter
- The solution is to spawn a cluster of rays
- Again, stochastic sampling can be used
 - Stochastically sample rays within the cone
 - Sampling probability drops off sharply away from the specular angle
 - Highlights can be soft, blurred reflections of other objects

Soft Shadows

- Point light sources produce sharp shadow edges
 - the point is either shadowed or not
 - only one ray is required
- With an extended light source the surface point may be partially visible to it (partial eclipse)
 - only part of the light from the sources reaches the point
 - the shadow edges are softer
 - the transition region is the *penumbra*
- Distribution ray tracing can simulate this:
 - fire shadow rays from random points on the source
 - weight them by the brightness
 - the resulting shading depends on the fraction of the obstructed shadow rays

Soft Shadows

fewer rays, more noise

more rays, less noise

Depth of Field

- The pinhole camera model only approximates real optics
 - real cameras have lenses with focal lengths
 - only one plane is truly in focus
 - points away from the focus project as disks
 - the further away from the focus the larger the disk
- the range of distance that appear in focus is the depth of field
- simulate this using stochastic sampling through different parts of the lens

