
Texture Mapping II

2Baoquan Chen 2019

Adding Texture Mapping to Illumination

Texture mapping can be used to alter some or all of the constants in the

illumination equation. We can simply use the texture as the final color for

the pixel, or we can just use it as diffuse color, or we can use the texture to

alter the normal, or... the possibilities are endless!

Phong's Illumination Model

Constant Diffuse Color
Texture

Texture used as Label

Texture used as Diffuse Color

3Baoquan Chen 2019

Texture Mapping in Quake

Quake uses light maps in addition to texture maps. Texture maps are used to add

detail to surfaces, and light maps are used to store pre-computed illumination. The

two are multiplied together at run-time, and cached for efficiency.

Texture Maps Light Maps

Data RGB Intensity

Instanced Yes No

Resolution High Low

Light map image

by Nick Chirkov.

Textures Only Textures & Light Maps

4Baoquan Chen 2019

Bump Mapping

Textures can be used to alter the surface normal of an object. This does NOT change the actual

shape of the surface -- we are only shading it as if it were a different shape! This technique is

called bump mapping. The texture map is treated as a single-valued height function. The value

of the function is not actually used, just its partial derivatives. The partial derivatives tell how

to alter the true surface normal at each point on the surface to make the object appear as if it

were deformed by the height function.

Bump Mapping assumes that the Illumination model is applied at every pixel (as in Phong

Shading or ray tracing).

Sphere w/Diffuse Texture Swirly Bump Map
Sphere w/Diffuse Texture

& Bump Map

5Baoquan Chen 2019

More Bump Map Examples

Cylinder w/Diffuse Texture Map

Bump Map

Cylinder w/Texture Map & Bump Map

Since the actual shape of the object does not change, the silhouette
edge of the object will not change.

6Baoquan Chen 2019

One More Bump Map Example

7Baoquan Chen 2019

Displacement Mapping
We use the texture map to actually move the surface point. This is called

displacement mapping. How is this fundamentally different than bump mapping?

The geometry must be displaced before visibility is determined. Is this easily done in

the graphics pipeline?

8Baoquan Chen 2019

Three Dimensional or Solid Textures

The textures that we have discussed to this

point are two-dimensional functions mapped

onto two-dimensional surfaces. Another

approach is to consider a texture as a function

defined in a three-dimensional volume.

Textures of this type are called solid textures.

Solid textures are very effective at

representing some types of materials such as

marble and wood. Generally, solid textures are

defined procedural functions rather than

tabularized or sampled functions as used in

2D. A popular approach is based on

An Image Synthesizer, by Ken Perlin,

SIGGRAPH '85. The vase to the right is from

this paper.

9Baoquan Chen 2019

Examples

10Baoquan Chen 2019

Projective Textures

• Use to simulate effects:

–Slide projector

–Spotlight illumination

–Shadows

–Reproject photograph of
an object onto object
geometry

Source: Wolfgang Heidrich [99]

15Baoquan Chen 2019

• Facts

–Texture coordinates can be transformed
by a matrix (e.g. a perspective
projection)

–OpenGL generalizes texture coordinates
to 4-component homogenous coordinates

–q coordinate is analogous to w

–Texture image can be subjected to a
projection independent from the viewing
projection

Projective Textures

16Baoquan Chen 2019

Example Code

Here is a code fragment implementing projective textures in OpenGL

// Basically, the first group of setting says that we will not be supplying texture coordinates.

// Instead, they will be automatically established based on the vertex coordinates in “EYE-SPACE”

// (after application of the MODEL_VIEW matrix).

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, (int) GL_EYE_LINEAR);

glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, (int) GL_EYE_LINEAR);

glTexGeni(GL_R, GL_TEXTURE_GEN_MODE, (int) GL_EYE_LINEAR);

glTexGeni(GL_Q, GL_TEXTURE_GEN_MODE, (int) GL_EYE_LINEAR);

// These calls initialize the TEXTURE_MAPPING function to identity. We will be using

// the Texture matrix stack to establish this mapping indirectly.

float [] eyePlaneS = { 1.0f, 0.0f, 0.0f, 0.0f };

float [] eyePlaneT = { 0.0f, 1.0f, 0.0f, 0.0f };

float [] eyePlaneR = { 0.0f, 0.0f, 1.0f, 0.0f };

float [] eyePlaneQ = { 0.0f, 0.0f, 0.0f, 1.0f };

glTexGenfv(GL_S, GL_EYE_PLANE, eyePlaneS);

glTexGenfv(GL_T, GL_EYE_PLANE, eyePlaneT);

glTexGenfv(GL_R, GL_EYE_PLANE, eyePlaneR);

glTexGenfv(GL_Q, GL_EYE_PLANE, eyePlaneQ);

17Baoquan Chen 2019

Example Code

Here is where the extra “Texture” transformation on the vertices is inserted.

glMatrixMode(GL_TEXTURE);

glLoadIdentity();

glTranslated(0.5, 0.5, 0.5); // Scale and bias the [-1,1] NDC values

glScaled(0.5, 0.5, 0.5); // to the [0,1] range of the texture map

gluPerspective(?, ?, ?, ?); // projector "projection" and view matrices

gluLookAt(lightPosition_x,lightPosition_y,lightPosition_z,
At_x,At_y,At_z, Up_x,Up_y,Up_z);

glMultMatrixf((GLfloat *) M_Inverse); //M_Inverse is the inverse of the
concatenation of the ModelView and Projection matrices

glMatrixMode(GL_MODELVIEW);

Useful function:

glGetFloatv();

http://www.opengl.org/developers/code/glut_examples/advanced/projtex.c

http://www.opengl.org/developers/code/glut_examples/advanced/projtex.c

18Baoquan Chen 2019

Artifacts

• Projective texture mapping produces a
reverse projection as well

• Projective texture mapping ‘penetrates
through’ objects

19Baoquan Chen 2019

Shadow Maps
Textures can also be used to generate

shadows. First, the scene is rendered from

the point of view of each light source, but

only the depth-buffer values are retained.

In this example the closer points are lighter

and more distant parts are darker (with the

exception of the most distant value which is

shown as white for contrast).

As each pixel is shaded (once more shadow

mapping assumes that the illumination

model is applied at each pixel) a vector from

the visible point to the light source is

computed (Remember it is needed to

compute, N . L). As part of normalizing it we

compute its length. If we find the projection

of the 3D point that we are shading onto

each lights shadow buffer we can compare

this length with the value stored in the

shadow buffer. If the shadow-buffer is less

than the current point's length then the

point is in shadow and the corresponding

light source can be ignored for that point.

