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Modeling 

Transformation

Trival Rejection

Illumination

Viewing 

Transformation

Clipping

Projection

Display

The 3-D Graphics Rendering Pipeline

• Almost every discussion of 3-D graphics 
begins here

• Seldom are any two versions drawn the same 
way

• Seldom are any two versions implemented the 
same way

• Primitives are processed in a series of steps

• Each step forwards its result on to the next 
step 

Rasterization & 

Pixel Operation
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Transformation

1. 2D Transformation

2. 3D Transformation

3. Viewing Projection
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2D Translation
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2D Rotation
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Back to Translation
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Matrix format?
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2D Translation Properties

1.There exists an inverse mapping for each function 

2.There exists an identity mapping 
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These properties might seem trivial at first glance, but they 
are actually very important, because when these conditions 
are shown for any class of functions it can be proven that 
such a class is closed under composition (i.e. any series of 
translations can be composed to a single translation). In 
mathematical parlance this is the same as saying that 
translations form an algebraic group.

x
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TTTx n
'

' 21 

2D Translation Properties
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Back to Rotation
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Transformation Order

Order matters!

translation ---> rotation rotation ---> translation
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Other 2D Transformations

X-shear Y-shear scaling

And more …….
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2D Rotation by Shears

http://cfcs.pku.edu.cn/~baoquan/papers/rot2p.pdf

http://www.cs.sdu.edu.cn/~baoquan/papers/rot2p.pdf
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http://cfcs.pku.edu.cn/~baoquan/papers/rot.pdf

3D Rotation by Shears

http://www.cs.sdu.edu.cn/~baoquan/papers/rot.pdf
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Affine transformation
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The coordinates of three corresponding points 
uniquely determine any Affine Transform!!

Property: preserve parallel lines
Remember affine function on vector is equal to linear 
plus translation
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Transformation

1. 2D Transformation

2. 3D Transformation

3. Viewing Projection
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3D Translation

T = 

1 0 0 t0

0 1 0 t1

0 0 1 t2

0 0 0 1
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3D Scaling

S = 

s0 0 0 0

0 s1 0 0

0 0 s2 0

0 0 0 1
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3D Rotation

Rx = 

1 0 0 0

0 cos –sin 0

0 sin cos 0

0 0 0 1

Ry = 

cos 0 sin 0

0 1 0 0

–sin 0 cos 0

0 0 0 1

Rz = 

cos –sin 0 0

sin cos 0 0

0 0 1 0

0 0 0 1
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Axis-angle rotation
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• Right-handed vs.           left-handed

• Z-axis determined from X and Y by cross product: Z=X×Y

• Cross product follows right-hand rule in a right-handed 
coordinate system, and left-hand rule in left-handed system.

From 2D to 3D: Preliminary

(out of page) X

Y

Z
X

Y

Z

(into page)

Z  X  Y 

X2Y3  X3Y2

X3Y1  X1Y3

X1Y2  X2Y1

















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
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Rotation as Vector Operation
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Axis-angle rotation

R  aaT  cos (I  aaT )  sina*

aaT Project onto a

I  aaT Project onto a' s normal 
plane

a* Dual matrix. Project onto normal 
plane,

flip by 90°

cos ,sin Rotate by  in normal 
plane

(assumes a is unit.)

The matrix R for rotation by  about axis (unit) a:
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Transformation

1. 2D Transformation

2. 3D Transformation

3. Viewing Projection
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Orthographic Projection

• Throw away Z coordinates

• Get points on the XY plane

X

Y
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Perspective

http://www.indiana.edu/~kglowack/athens/

http://www.indiana.edu/~kglowack/athens/
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Perspective Projection
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A Simple Perspective Camera

• Canonical case:
–camera looks along the z-axis

–focal point is the origin

–image plane is parallel to the xy-plane at 
distance d

–(We call d the focal length, mainly for historical 
reasons)

y

x

z
F=[0,0,0]

[0,0,d]

Image plane
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Similar Triangles

• Diagram shows y-coordinate, x-coordinate 
is similar

(0, 0) (0, d)

(y, z)

Y

Z

(y’, z’)
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Similar Triangles

z’ = d

y’/z’ = y/z

y’/d = y/z

y’ = (d/z)*y

(0, 0) (0, d)

(y, z)

Y

Z

(y’, z’)

point [x,y,z] projects to [(d/z)x, (d/z)y, d]
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A Perspective Projection Matrix

•Projection using homogeneous coordinates:

– transform [x, y, z] to [(d/z)x, (d/z)y, d]
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Camera Position and Orientation



46Baoquan Chen 2019

LookFrom And LookAt

Is This Enough?
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LookFrom And LookAt
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Complete Camera Specification

VUp

d

LookFrom

LookAt
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Complete Camera Specification

VUp
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Viewing Volume
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Rendering from any camera position

(0, 0) (0, d)

(y, z)
Y

Z

(y’, z’)

(0, 0) (0, d)

(y, z)

Y

Z

(?, ?)

LookFrom

LookAt

VUp
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Coordinate Transformation
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Coordinate Transformation
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Viewing Transformations

X

Z

Y

LookFrom

LookAt

VUp
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Viewing Transformations

Z

LookFrom

LookAt

VUp

Translate LookFrom to origin

X

Y
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Viewing Transformations

Z

LookFrom
LookAt

Rotate LookAt to Z axis (axis-angle rotation)

X

Y

VUp
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Viewing Transformations

Z

LookFrom
LookAt

Rotate about Z to get the projection of Vup parallel to the Y axis

X

Y

VUp
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Implementation

Implementing the lookat/lookfrom/vup viewing scheme

(1) Translate by -lookfrom, bring focal point to 
origin

(2) Rotate lookat-lookfrom to the z-axis with 
matrix R:

» v = (lookat-lookfrom) (normalized) and z = 
[0,0,1]

» rotation axis: a = (vxz)/|vxz|

» rotation angle: cos = v•z and sin = |vxz|

R  aa
T
 v  z (I  aa

T
)  v  z a

*

 0

a*

0 az ay

az 0 ax

ay ax














where

or:  glRotate(,ax, ay, az)

(3) Rotate about z-axis to get projection of vup parallel 
to the y-axis
» watch out if vup is along the z-axis
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Screen Coordinates

VUp

d

LookFrom

LookAt
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Viewport Transformations

• A transformation maps the visible (model) world onto 
screen or window coordinates

• In OpenGL a viewport transformation, e.g. glOrtho(), 
defines what part of the world is mapped in standard 
“Normalized Device Coordinates” ((-1,-1) to (1,1))

• The viewpoint transformation maps NDC into actual 
window, pixel coordinates

–by default this fills the window

–otherwise use glViewport

(2,0)

(4.7,2)

(0,0)

(640,480)
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Clipping
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The Viewing Frustum

x

y

z

image plane

near far
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Normalizing the Viewing Frustum

• Transform frustum to a cube before clipping

x

y

z

near far

1

1

1

0

x

y

z

image plane

near
far

• Converts perspective frustum to 
orthographic frustum

• Very similar to our perspective 
transformation – just another matrix
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Model and Transformation Hierarchy
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How to Model a Stick Person

• Make a stick person out of cubes

• Just translate, rotate, and 
scale each one to get the right 
size, shape, position, and 
orientation.

• Looks great, until you try to 
make it move.
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The Right Control Knobs

• As soon as you want to change 
something, the model likely falls 
apart

• Reason: the thing you’re modeling is 
constrained but your model doesn’t 
know it

• Wanted: 
–some sort of representation of structure 

–Control knob

• This kind of control knob is 
convenient for static models, and 
vital for animation!

• Key:  structure the transformations in 
the right way:  using a hierarchy



67Baoquan Chen 2019

Making an Articulated Model

• A minimal 2-D jointed object:
–Two pieces, A (“forearm”) and B (“upper arm”)

–Attach point q on B to point r on A (“elbow”)

–Desired control knobs:
» u: shoulder angle (A and B rotate together about p)

» v: elbow angle (A rotates about r, which stays        
attached to p)

Ar B qp
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Making an Arm, step 1

• Start with A and B in their untransformed 
configurations  (B is hiding behind A)

• First apply a series of transformations to 
A, leaving B where it is…

Ar



69Baoquan Chen 2019

Making an Arm, step 2

• Translate by -r, bringing r to the origin

• You can now see B peeking out from behind A

B qp
Ar

Ar
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Making an Arm, step 3

• Next,  we rotate A by v (the “elbow” 
angle)

B qpB qp
Ar
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Making an Arm, step 4

• Translate A by q, bringing r and q together to 
form the elbow joint

• We can regard q as the origin of the elbow 
coordinate system, and regard A as being in this 
coordinate system.

B qpB qp
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Making an Arm, step 5

• From now on, each transformation applies to both A
and B (This is important!)

• First, translate by -p, bringing p to the origin

• A and B both move together, so the elbow doesn’t 
separate!

B qp
B qp
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Making an Arm, step 6

• Then, we rotate by u, the “shoulder” 
angle 

• Again, A and B rotate together

B qp
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Making an Arm, step 7

• Finally, translate by T, bringing the arm where we 
want it

• p is at origin of shoulder coordinate system
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Transformation Hierarchies

Another point of view:

• The shoulder coordinate 
transformation moves 
everything below it with 
respect to the shoulder:
–B

–A and its transformation 

• The elbow coordinate 
transformation moves A with 
respect to the elbow – A’

Trans -r

Rot v

Trans q

A

Trans -p

Rot u

Trans T

B

Shoulder coordinate transform 

Elbow coordinate transform

Primitive

A’
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A Schematic Humanoid

• Each node represents

–rotation(s)

–geometric primitive(s)

–struct. 
transformations

• The root can be 
anywhere.  We chose the 
hip (can re-root)

• Control for each joint 
angle, plus global 
position and 
orientation

• A realistic human would 
be much more complex

hip

torso

headl. arm2

l. arm1 r. arm1

r. arm2

l. leg1

l. leg2

r. leg1

r. leg 2shoulder

neck
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Directed Acyclic Graph

• This is a graph, so you 
can re-root it.

• It’s directed, rendering 
traversal only follows 
links one way.

• It’s acyclic, to avoid 
infinite loops in 
rendering.

• Not necessarily a tree.
– e.g. l.arm2 and r.arm2 
primitives might be two 
instantiations (one 
mirrored) of the same 
geometry

hip

torso

headl. arm2

l. arm1 r. arm1

r. arm2

l. leg1

l. leg2

r. leg1

r. leg 2shoulder

neck
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What Hierarchies Can and Can’t Do

• Advantages:
–Reasonable control knobs

–Maintains structural constraints

• Disadvantages:
–Can’t do closed kinematic chains (keep hand on 
hip)

• A more general approach:
–inverse kinematics - more complex, but better knobs

• Hierarchies are a vital tool for modeling 
and animation
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Implementing Hierarchies

• Building block: a matrix stack that you can 
push/pop

• Recursive algorithm that descends your model 
tree, doing transformations, pushing, 
popping, and drawing

• Tailored to OpenGL’s state machine 
architecture (or vice versa)

• Nuts-and-bolts issues:
–What kind of nodes should I put in my 
hierarchy?

–What kind of interface should I use to 
construct and edit hierarchical models?
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The Matrix Stack

• Idea of Matrix Stack:
–LIFO stack of matrices with push and pop operations

–current transformation matrix (product of all transformations 
on stack)

–transformations modify matrix at the top of the stack

• Recursive algorithm:
–load the identity matrix

–for each internal node:
» push a new matrix onto the stack

» concatenate transformations onto current transformation matrix

» recursively descend tree

» pop matrix off of stack

–for each leaf node:
» draw the geometric primitive using the current transformation 
matrix
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Relevant OpenGL routines

glPushMatrix(), glPopMatrix()

push and pop the stack. push leaves a copy of the current 
matrix on top of the stack

glLoadIdentity(), glLoadMatrixd(M)

load the Identity matrix, or an arbitrary matrix, onto top 
of the stack
glMultMatrixd(M)

multiply the matrix C on top of stack by M.  C = CM

glOrtho (x0,y0,x1,y1,z0,z1)

set up parallel projection matrix

glRotatef(theta,x,y,z), glRotated(…)

axis/angle rotate. “f” and “d” take floats and doubles, 
respectively  

glTranslatef(x,y,z), glScalef(x,y,z)

translate, rotate. (also exist in “d” versions.)
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Two-link arm, revisited, in OpenGL

Trace of Opengl calls

glLoadIdentity();

glOrtho(…);

glPushMatrix();

glTranslatef(Tx,Ty,0);

glRotatef(u,0,0,1);

glTranslatef(-px,-py,0);

glPushMatrix();

glTranslatef(qx,qy,0);

glRotatef(v,0,0,1);

glTranslatef(-rx,-ry,0);

Draw(A);

glPopMatrix();

Draw(B);

glPopMatrix();

Trans -r

Rot v

Trans q

A

Trans -p

Rot u

Trans T

B


