
1Baoquan Chen 2019

Modeling 

Transformation

Trival Rejection

Illumination

Viewing 

Transformation

Clipping

Projection

Display

The 3-D Graphics Rendering Pipeline

• Almost every discussion of 3-D graphics 
begins here

• Seldom are any two versions drawn the same 
way

• Seldom are any two versions implemented the 
same way

• Primitives are processed in a series of steps

• Each step forwards its result on to the next 
step 

Rasterization & 

Pixel Operation



7Baoquan Chen 2019

Transformation

1. 2D Transformation

2. 3D Transformation

3. Viewing Projection



8Baoquan Chen 2019

2D Translation





y

x

 t+y  = y'

 t+ x = x'



9Baoquan Chen 2019

2D Rotation













siny  cos x= y'

 siny - cos x= x'


















 



















y

x

y

x
M

y

x





sincos

sincos

'

'

Matrix and Vector format:



10Baoquan Chen 2019

Back to Translation





y

x

 t+y  = y'

 t+ x = x'

Matrix format?




































y

x

y

x
M

y

x

????

????

'

'



















100

10

01

y

x

t

t

M





































































11

'

'

222120

121110

020100

y

x

mmm

mmm

mmm

y

x

M

w

wy

wx

Homogenous coordinates!



11Baoquan Chen 2019

2D Translation Properties

1.There exists an inverse mapping for each function 

2.There exists an identity mapping 























100

10

01
1

y

x

t

t

M

)(

100

010

001

100

10

01

0

0 IIdentityt

t

M y

x

t

t

x

x















































12Baoquan Chen 2019

These properties might seem trivial at first glance, but they 
are actually very important, because when these conditions 
are shown for any class of functions it can be proven that 
such a class is closed under composition (i.e. any series of 
translations can be composed to a single translation). In 
mathematical parlance this is the same as saying that 
translations form an algebraic group.

x

T

TTTx n
'

' 21 

2D Translation Properties



13Baoquan Chen 2019

Back to Rotation

 














 



















y

x

y

x
M

y

x





cossin

sincos

'

'















 



100

0cossin

0sincos





RM




















100

0cossin

0sincos
1





RM Ident ityM R  0



14Baoquan Chen 2019

Transformation Order

Order matters!

translation ---> rotation rotation ---> translation



15Baoquan Chen 2019

Other 2D Transformations

X-shear Y-shear scaling

And more …….



16Baoquan Chen 2019

2D Rotation by Shears

http://cfcs.pku.edu.cn/~baoquan/papers/rot2p.pdf

http://www.cs.sdu.edu.cn/~baoquan/papers/rot2p.pdf


17Baoquan Chen 2019

http://cfcs.pku.edu.cn/~baoquan/papers/rot.pdf

3D Rotation by Shears

http://www.cs.sdu.edu.cn/~baoquan/papers/rot.pdf


18Baoquan Chen 2019

Affine transformation



















100

121110

020100

mmm

mmm

M

The coordinates of three corresponding points 
uniquely determine any Affine Transform!!

Property: preserve parallel lines
Remember affine function on vector is equal to linear 
plus translation

),( 11 yx ),( 22 yx

),( 33 yx

x

y

'x

'y

)','( 11 yx)','( 22 yx

)','( 33 yx



19Baoquan Chen 2019

Transformation

1. 2D Transformation

2. 3D Transformation

3. Viewing Projection



20Baoquan Chen 2019

3D Translation

T = 

1 0 0 t0

0 1 0 t1

0 0 1 t2

0 0 0 1



21Baoquan Chen 2019

3D Scaling

S = 

s0 0 0 0

0 s1 0 0

0 0 s2 0

0 0 0 1



22Baoquan Chen 2019

3D Rotation

Rx = 

1 0 0 0

0 cos –sin 0

0 sin cos 0

0 0 0 1

Ry = 

cos 0 sin 0

0 1 0 0

–sin 0 cos 0

0 0 0 1

Rz = 

cos –sin 0 0

sin cos 0 0

0 0 1 0

0 0 0 1



24Baoquan Chen 2019

Axis-angle rotation



25Baoquan Chen 2019

• Right-handed vs.           left-handed

• Z-axis determined from X and Y by cross product: Z=X×Y

• Cross product follows right-hand rule in a right-handed 
coordinate system, and left-hand rule in left-handed system.

From 2D to 3D: Preliminary

(out of page) X

Y

Z
X

Y

Z

(into page)

Z  X  Y 

X2Y3  X3Y2

X3Y1  X1Y3

X1Y2  X2Y1





















26Baoquan Chen 2019



'x

a

x

Rotation as Vector Operation





sin)()cos1)()()(cos

)(sin)(]cos))([('

axaaxx

aaxaxaaxxx








xaaaIx T 
]s in)()co s1)(()[(co s' *  

Dx 2'

Dx2

Dx 2

ax

aD xxx  2''

ax

Dx 2'

Dx2 Dx 2



27Baoquan Chen 2019

Axis-angle rotation

R  aaT  cos (I  aaT )  sina*

aaT Project onto a

I  aaT Project onto a' s normal 
plane

a* Dual matrix. Project onto normal 
plane,

flip by 90°

cos ,sin Rotate by  in normal 
plane

(assumes a is unit.)

The matrix R for rotation by  about axis (unit) a:



35Baoquan Chen 2019

Transformation

1. 2D Transformation

2. 3D Transformation

3. Viewing Projection



36Baoquan Chen 2019

Orthographic Projection

• Throw away Z coordinates

• Get points on the XY plane

X

Y



37Baoquan Chen 2019

Perspective

http://www.indiana.edu/~kglowack/athens/

http://www.indiana.edu/~kglowack/athens/


38Baoquan Chen 2019

Perspective Projection



39Baoquan Chen 2019

A Simple Perspective Camera

• Canonical case:
–camera looks along the z-axis

–focal point is the origin

–image plane is parallel to the xy-plane at 
distance d

–(We call d the focal length, mainly for historical 
reasons)

y

x

z
F=[0,0,0]

[0,0,d]

Image plane



40Baoquan Chen 2019

Similar Triangles

• Diagram shows y-coordinate, x-coordinate 
is similar

(0, 0) (0, d)

(y, z)

Y

Z

(y’, z’)



41Baoquan Chen 2019

Similar Triangles

z’ = d

y’/z’ = y/z

y’/d = y/z

y’ = (d/z)*y

(0, 0) (0, d)

(y, z)

Y

Z

(y’, z’)

point [x,y,z] projects to [(d/z)x, (d/z)y, d]



42Baoquan Chen 2019

A Perspective Projection Matrix

•Projection using homogeneous coordinates:

– transform [x, y, z] to [(d/z)x, (d/z)y, d]













































































z

dz

dy

dx

z

y

x

d

d

d

w

wz

wy

wx

10100

000

000

000

'

'

'









































d

y
z

d

x
z

d

z

y

x

'

'

'
w

1



45Baoquan Chen 2019

Camera Position and Orientation



46Baoquan Chen 2019

LookFrom And LookAt

Is This Enough?



47Baoquan Chen 2019

LookFrom And LookAt



48Baoquan Chen 2019

Complete Camera Specification

VUp

d

LookFrom

LookAt



49Baoquan Chen 2019

Complete Camera Specification

VUp



50Baoquan Chen 2019

Viewing Volume



51Baoquan Chen 2019

Rendering from any camera position

(0, 0) (0, d)

(y, z)
Y

Z

(y’, z’)

(0, 0) (0, d)

(y, z)

Y

Z

(?, ?)

LookFrom

LookAt

VUp



52Baoquan Chen 2019

Coordinate Transformation

x

y u

v p

e

o

ypxpoppp yxyx


 ),(

vpupeppp vuvu


 ),(



































































1100

0

0

100

10

01

1

v

u

yy

xx

y

x

y

x

p

p

vu

vu

e

e

p

p













































































































11001100

10

01

100

0

0

1

y

x

yyx

xyx

y

x

y

x

yx

yx

v

u

p

p

evv

euu

p

p

e

e

vv

uu

p

p



53Baoquan Chen 2019

Coordinate Transformation

x

y u

v p

e

o











































































11000

0

0

0

1000

100

010

001

1

w

v

u

zzz

yyy

xxx

z

y

x

z

y

x

p

p

p

wvu

wvu

wvu

e

e

e

p

p

p

















































































11000

100

010

001

1000

0

0

0

1

z

y

x

z

y

x

zyx

zyx

zyx

w

v

u

p

p

p

e

e

e

www

vvv

uuu

p

p

p

z

w



54Baoquan Chen 2019

Viewing Transformations

X

Z

Y

LookFrom

LookAt

VUp



55Baoquan Chen 2019

Viewing Transformations

Z

LookFrom

LookAt

VUp

Translate LookFrom to origin

X

Y



56Baoquan Chen 2019

Viewing Transformations

Z

LookFrom
LookAt

Rotate LookAt to Z axis (axis-angle rotation)

X

Y

VUp



57Baoquan Chen 2019

Viewing Transformations

Z

LookFrom
LookAt

Rotate about Z to get the projection of Vup parallel to the Y axis

X

Y

VUp



58Baoquan Chen 2019

Implementation

Implementing the lookat/lookfrom/vup viewing scheme

(1) Translate by -lookfrom, bring focal point to 
origin

(2) Rotate lookat-lookfrom to the z-axis with 
matrix R:

» v = (lookat-lookfrom) (normalized) and z = 
[0,0,1]

» rotation axis: a = (vxz)/|vxz|

» rotation angle: cos = v•z and sin = |vxz|

R  aa
T
 v  z (I  aa

T
)  v  z a

*

 0

a*

0 az ay

az 0 ax

ay ax














where

or:  glRotate(,ax, ay, az)

(3) Rotate about z-axis to get projection of vup parallel 
to the y-axis
» watch out if vup is along the z-axis



59Baoquan Chen 2019

Screen Coordinates

VUp

d

LookFrom

LookAt



60Baoquan Chen 2019

Viewport Transformations

• A transformation maps the visible (model) world onto 
screen or window coordinates

• In OpenGL a viewport transformation, e.g. glOrtho(), 
defines what part of the world is mapped in standard 
“Normalized Device Coordinates” ((-1,-1) to (1,1))

• The viewpoint transformation maps NDC into actual 
window, pixel coordinates

–by default this fills the window

–otherwise use glViewport

(2,0)

(4.7,2)

(0,0)

(640,480)



61Baoquan Chen 2019

Clipping



62Baoquan Chen 2019

The Viewing Frustum

x

y

z

image plane

near far



63Baoquan Chen 2019

Normalizing the Viewing Frustum

• Transform frustum to a cube before clipping

x

y

z

near far

1

1

1

0

x

y

z

image plane

near
far

• Converts perspective frustum to 
orthographic frustum

• Very similar to our perspective 
transformation – just another matrix



64Baoquan Chen 2019

Model and Transformation Hierarchy



65Baoquan Chen 2019

How to Model a Stick Person

• Make a stick person out of cubes

• Just translate, rotate, and 
scale each one to get the right 
size, shape, position, and 
orientation.

• Looks great, until you try to 
make it move.



66Baoquan Chen 2019

The Right Control Knobs

• As soon as you want to change 
something, the model likely falls 
apart

• Reason: the thing you’re modeling is 
constrained but your model doesn’t 
know it

• Wanted: 
–some sort of representation of structure 

–Control knob

• This kind of control knob is 
convenient for static models, and 
vital for animation!

• Key:  structure the transformations in 
the right way:  using a hierarchy



67Baoquan Chen 2019

Making an Articulated Model

• A minimal 2-D jointed object:
–Two pieces, A (“forearm”) and B (“upper arm”)

–Attach point q on B to point r on A (“elbow”)

–Desired control knobs:
» u: shoulder angle (A and B rotate together about p)

» v: elbow angle (A rotates about r, which stays        
attached to p)

Ar B qp



68Baoquan Chen 2019

Making an Arm, step 1

• Start with A and B in their untransformed 
configurations  (B is hiding behind A)

• First apply a series of transformations to 
A, leaving B where it is…

Ar



69Baoquan Chen 2019

Making an Arm, step 2

• Translate by -r, bringing r to the origin

• You can now see B peeking out from behind A

B qp
Ar

Ar



70Baoquan Chen 2019

Making an Arm, step 3

• Next,  we rotate A by v (the “elbow” 
angle)

B qpB qp
Ar



71Baoquan Chen 2019

Making an Arm, step 4

• Translate A by q, bringing r and q together to 
form the elbow joint

• We can regard q as the origin of the elbow 
coordinate system, and regard A as being in this 
coordinate system.

B qpB qp



72Baoquan Chen 2019

Making an Arm, step 5

• From now on, each transformation applies to both A
and B (This is important!)

• First, translate by -p, bringing p to the origin

• A and B both move together, so the elbow doesn’t 
separate!

B qp
B qp



73Baoquan Chen 2019

Making an Arm, step 6

• Then, we rotate by u, the “shoulder” 
angle 

• Again, A and B rotate together

B qp



74Baoquan Chen 2019

Making an Arm, step 7

• Finally, translate by T, bringing the arm where we 
want it

• p is at origin of shoulder coordinate system



76Baoquan Chen 2019

Transformation Hierarchies

Another point of view:

• The shoulder coordinate 
transformation moves 
everything below it with 
respect to the shoulder:
–B

–A and its transformation 

• The elbow coordinate 
transformation moves A with 
respect to the elbow – A’

Trans -r

Rot v

Trans q

A

Trans -p

Rot u

Trans T

B

Shoulder coordinate transform 

Elbow coordinate transform

Primitive

A’



77Baoquan Chen 2019

A Schematic Humanoid

• Each node represents

–rotation(s)

–geometric primitive(s)

–struct. 
transformations

• The root can be 
anywhere.  We chose the 
hip (can re-root)

• Control for each joint 
angle, plus global 
position and 
orientation

• A realistic human would 
be much more complex

hip

torso

headl. arm2

l. arm1 r. arm1

r. arm2

l. leg1

l. leg2

r. leg1

r. leg 2shoulder

neck



78Baoquan Chen 2019

Directed Acyclic Graph

• This is a graph, so you 
can re-root it.

• It’s directed, rendering 
traversal only follows 
links one way.

• It’s acyclic, to avoid 
infinite loops in 
rendering.

• Not necessarily a tree.
– e.g. l.arm2 and r.arm2 
primitives might be two 
instantiations (one 
mirrored) of the same 
geometry

hip

torso

headl. arm2

l. arm1 r. arm1

r. arm2

l. leg1

l. leg2

r. leg1

r. leg 2shoulder

neck



79Baoquan Chen 2019

What Hierarchies Can and Can’t Do

• Advantages:
–Reasonable control knobs

–Maintains structural constraints

• Disadvantages:
–Can’t do closed kinematic chains (keep hand on 
hip)

• A more general approach:
–inverse kinematics - more complex, but better knobs

• Hierarchies are a vital tool for modeling 
and animation



80Baoquan Chen 2019

Implementing Hierarchies

• Building block: a matrix stack that you can 
push/pop

• Recursive algorithm that descends your model 
tree, doing transformations, pushing, 
popping, and drawing

• Tailored to OpenGL’s state machine 
architecture (or vice versa)

• Nuts-and-bolts issues:
–What kind of nodes should I put in my 
hierarchy?

–What kind of interface should I use to 
construct and edit hierarchical models?



81Baoquan Chen 2019

The Matrix Stack

• Idea of Matrix Stack:
–LIFO stack of matrices with push and pop operations

–current transformation matrix (product of all transformations 
on stack)

–transformations modify matrix at the top of the stack

• Recursive algorithm:
–load the identity matrix

–for each internal node:
» push a new matrix onto the stack

» concatenate transformations onto current transformation matrix

» recursively descend tree

» pop matrix off of stack

–for each leaf node:
» draw the geometric primitive using the current transformation 
matrix



82Baoquan Chen 2019

Relevant OpenGL routines

glPushMatrix(), glPopMatrix()

push and pop the stack. push leaves a copy of the current 
matrix on top of the stack

glLoadIdentity(), glLoadMatrixd(M)

load the Identity matrix, or an arbitrary matrix, onto top 
of the stack
glMultMatrixd(M)

multiply the matrix C on top of stack by M.  C = CM

glOrtho (x0,y0,x1,y1,z0,z1)

set up parallel projection matrix

glRotatef(theta,x,y,z), glRotated(…)

axis/angle rotate. “f” and “d” take floats and doubles, 
respectively  

glTranslatef(x,y,z), glScalef(x,y,z)

translate, rotate. (also exist in “d” versions.)



83Baoquan Chen 2019

Two-link arm, revisited, in OpenGL

Trace of Opengl calls

glLoadIdentity();

glOrtho(…);

glPushMatrix();

glTranslatef(Tx,Ty,0);

glRotatef(u,0,0,1);

glTranslatef(-px,-py,0);

glPushMatrix();

glTranslatef(qx,qy,0);

glRotatef(v,0,0,1);

glTranslatef(-rx,-ry,0);

Draw(A);

glPopMatrix();

Draw(B);

glPopMatrix();

Trans -r

Rot v

Trans q

A

Trans -p

Rot u

Trans T

B


