
PCA & SVD
薛犇 吴润迪

1

Principal Component Analysis
● Start from a problem in least-square solution, fit one line
● Minimize the total distance from all points to the line.

● line l :
● Similar to previous solution:

2

Principal Component Analysis

● is the centroid of the given point set P .

3

Principal Component Analysis
● Use Laplacian form:

● is the covariance matrix of the given point set.
● Setting the partial derivative of the above expression w.r.t n to zero, and

using rules of matrix differentiation, we arrive at:

● Thus, n is one of the eigenvectors of covariance matrix C.
4

Principal Component Analysis
● Principal component analysis finds orthogonal axes that represent the

input points well in terms of linear structures

5

PCA: Problem & Solution
● We need to find the directions that represents our data best.
● The variance of the projected points measures how far they are spread

away from the center

● m is the mass(centroid of point set) :
● Define the direction of line l by v, and assume that v is normalized.
● So we can replace the projected points in the expression of covariance:

6

PCA: Problem & Solution

● S is the scatter(covariance) matrix:

● Eigenvalues: Eigenvectors:
● The extremal values of the variance are, therefore:

7

Singular Value Decomposition
● Given a transformation A, let’s see what it does geometrically:
● If we are lucky, then , V being orthogonal, meaning A is

symmetric, and the eigenvectors of A are axes of the ellipse:

● The eigendecomposition of A tells us which orthogonal exes it scales.

8

Singular Value Decomposition
● However, in general, A also contains rotations, not just scaling along

orthogonal axes.

● A then looks like this:

9

Singular Value Decomposition

● Σ is a matrix with values on diagonal that are real and nonnegative
● U and V are orthogonal matrices
● SVD exists for any matrix of any dimension

10

SVD: Algorithms
● Solutions:

■ Golub Kahan
■ Jacobi Rotation

11

SVD: Algorithms - Golub Kahan
Pipeline:

1. Householder transformation, convert it to a bidiagonal matrix
2. QR algorithm to approximate the eigenvalue of this bidiagonal

matrix

a bidiagonal matrix is a matrix with non-zero entries along the main
diagonal and either the diagonal above or the diagonal below

12

SVD: Algorithms - Golub Kahan
● A Householder matrix P:

● Therefore:

● P is orthogonal

13

SVD: Algorithms - Golub Kahan
● Change a form:

● Now u can be any vector. Assume x is the first column of matrix A

14

SVD: Algorithms - Golub Kahan
● We have

● So we can convert all elements in first column of A to 0 except the first
one.

● And then we can iteratively convert A to a bidiagonal matrix.
15

SVD: Algorithms - Golub Kahan (quote)

潘建瑜，华东师范大学数学系，《矩阵计算/数值线性代数》

16

SVD: Algorithms - Golub Kahan (quote)

潘建瑜，华东师范大学数学系，《矩阵计算/数值线性代数》

17

SVD: Algorithms - Golub Kahan (quote)

潘建瑜，华东师范大学数学系，《矩阵计算/数值线性代数》

18

SVD: Algorithms - Golub Kahan (quote)

潘建瑜，华东师范大学数学系，《矩阵计算/数值线性代数》

19

SVD: Algorithms - Golub Kahan (quote)

潘建瑜，华东师范大学数学系，《矩阵计算/数值线性代数》

20

SVD: Algorithms - Golub Kahan
● In application: use QR algorithm to calculate the eigenvector
● Any real square matrix A may be decomposed as
● Q is an orthogonal matrix and R is an upper triangular matrix
● Formally, let A be a real matrix of which we want to compute the

eigenvalues, and let A0:=A. At the k-th step (starting with k = 0), we
compute the QR decomposition Ak=QkRk where Qk is an orthogonal
matrix (i.e., QT = Q−1) and Rk is an upper triangular matrix. We then form
Ak+1 = RkQk. Note that

● so all the Ak are similar and hence they have the same eigenvalues. The
algorithm is numerically stable because it proceeds by orthogonal
similarity transforms. 21

SVD: Algorithms - Golub Kahan (quote)
● Why we use QR?
● For common matrix, one iteration of QR decomposition cost O(n^3)
● But for tridiagonal matrix, time cost is O(n)

潘建瑜，华东师范大学数学系，《矩阵计算/数值线性代数》 22

SVD: Algorithms - Jacobi Rotation (quote)

潘建瑜，华东师范大学数学系，《矩阵计算/数值线性代数》

23

SVD: Algorithms - Jacobi Rotation
● Givens Transformation, Consider:

24

SVD: Algorithms - Jacobi Rotation (quote)

潘建瑜，华东师范大学数学系，《矩阵计算/数值线性代数》 25

SVD: Algorithms - Jacobi Rotation (quote)

潘建瑜，华东师范大学数学系，《矩阵计算/数值线性代数》 26

SVD: Algorithms - Jacobi Rotation (quote)

潘建瑜，华东师范大学数学系，《矩阵计算/数值线性代数》 27

Application
- Find bounding box

- Approximate normal of point cloud

- Shape matching

- 3D animation compression by principal components

- TensorTextures: multilinear image-based rendering

28

Find bounding box

29

Approximate normal of point cloud
- Compute the PCA of its local neighboring points

- The direction of the normal is simply the direction of the third
eigenvector, corresponding to the smallest eigenvalue.

30

Shape matching
- Align two shapes in correspondence by a rigid transformation

31

Shape matching - formalization
- Align two point sets

- Find a translation vector t and rotation matrix R such that:

32

Shape matching - solution

33

Shape matching - solution

34

Shape matching - solution

35

Shape matching - solution

36

Shape matching - solution
- Let

- So we want to find R that minimizes

37

Shape matching - solution
- Now we only need to find R such that RH is symmetric positive

definite. Then we know for sure Trace(RH) is maximal.

- Compute SVD of H

- Define

- which is symmetric and its eigenvalues are positive.

38

Shape matching - solution
- Summary

39

3D animations compression
- Each frame is a 3D-model

- Geometry – 3D coordinates of the vertices

- When the number of vertices is huge, how to represent it?

40

3D animations compression

41

1

1

1

N

N

N

x

x
y

y
z

z

 
 
 
 
 
 
 
 
 
 
 
 
  
 







3N  f

3D animations compression

42

3D animations compression
- Taking the first k principle components

- According to the property of SVD, it is the best rank k
approximation of the original matrix.

43

1

1

1

N

N

N

x

x
y

y
z

z

 
 
 
 
 
 
 
 
 
 
 
 
  
 







 
 
 
 
 
 
 
 
 
 
 
 
  
 

u1 u2 u3

1

2

f






 
 
 
 
  
 


VT

1

2

3

0
0






 
 
 
 
 
 
 
 

3D animations compression
- Approximate each frame by linear combination of the first a few

principal components.

44

1

1

1

N

N

N

x

x
y

y
z

z

 
 
 
 
 
 
 
 
 
 
 
 
  
 







 
 
 
 
 
 
 
 
 
 
 
 
  
 

u1 u2 u3

 
 
 
 
 
 
 
 
 
 
 
 
  
 

1

1

1

N

N

N

x

x
y

y
z

z

 
 
 
 
 
 
 
 
 
 
 
 
  
 







= u1 u2 u31 + 2 + 3

TensorTexture: purely image-based rendering

45
TensorTextures: Multilinear Image-Based Rendering, M. Alex O. Vasilescu and Demetri Terzopoulos

TensorTexture: Tensor and N-mode SVD

46
TensorTextures: Multilinear Image-Based Rendering, M. Alex O. Vasilescu and Demetri Terzopoulos

TensorTexture: Tensor and N-mode SVD

47
TensorTextures: Multilinear Image-Based Rendering, M. Alex O. Vasilescu and Demetri Terzopoulos

TensorTexture: Tensor and N-mode SVD
- Calculate N-mode SVD

48
TensorTextures: Multilinear Image-Based Rendering, M. Alex O. Vasilescu and Demetri Terzopoulos

TensorTexture: Tensor and N-mode SVD

49
TensorTextures: Multilinear Image-Based Rendering, M. Alex O. Vasilescu and Demetri Terzopoulos

TensorTexture: multilinear rendering

50
TensorTextures: Multilinear Image-Based Rendering, M. Alex O. Vasilescu and Demetri Terzopoulos

TensorTexture: multilinear rendering

51
TensorTextures: Multilinear Image-Based Rendering, M. Alex O. Vasilescu and Demetri Terzopoulos

TensorTexture: multilinear rendering

52
TensorTextures: Multilinear Image-Based Rendering, M. Alex O. Vasilescu and Demetri Terzopoulos

TensorTexture: multilinear rendering
- TensorTextures models how the appearance of a textured surface

varies with view and illumination:

53
TensorTextures: Multilinear Image-Based Rendering, M. Alex O. Vasilescu and Demetri Terzopoulos

TensorTexture: multilinear rendering
- It decomposes the image ensemble into 37 × 21 basis vectors of the same

dimension, and represents each image by two coefficient vectors, one of
length 37 to encode the view and the other of length 21 to encode the
illumination.

54
TensorTextures: Multilinear Image-Based Rendering, M. Alex O. Vasilescu and Demetri Terzopoulos

TensorTexture: multilinear rendering
- TensorTexture basis leads to a straightforward rendering algorithm. To render

an image d, compute

- where v and l are the view and illumination representation.

- Given a novel view direction, find the three nearest observed view and
represent the novel view as a convex combination of them.

55
TensorTextures: Multilinear Image-Based Rendering, M. Alex O. Vasilescu and Demetri Terzopoulos

Reference
- https://pdfs.semanticscholar.org/6d92/8a2f8fbf93812b03d077508dfa9c7dbda4

d1.pdf. 3d animation compression.

- https://dl.acm.org/citation.cfm?id=1015725 TensorTexture.

- https://www.google.com.hk/search?safe=active&biw=1220&bih=738&ei=Uf74
W62hJcrYvgSXgamYDg&q=svd+for+graphics&oq=svd+for+&gs_l=psy-
ab.3..35i39l2j0i20i263j0l7.46.4126..5499...8.0..0.490.5002.4-11......0....1..gws-
wiz.....6..0i67j0i131.4hKaXXRsPVw SVD and Its Applications

- https://www.cs.tau.ac.il/~dcor/Graphics/cg-slides/3d_geometry_lesson2.pdf 3d
geometry for computer graphics

56

