PCA & SVD



Principal Component Analysis

e Start from a problem in least-square solution, fit one line
e Minimize the total distance from all pointsto

T

in E(n,d) = o £dfs &t =1.
i (n,d) ;(np.+) s.t. |n|

. n'x+d=0
e linel:

e Similar to previous solution:

OE(n,d)/on = 0 9F(n,d)/dd = 0



Principal Component Analysis

OE(n,d)/0d =0
= 2) (n'pi+d)=0

= nd=— TZpi

= d:mn—[_f"a

® 5_5y p/n 1sthecentroid of the given point set P .

in E(n,d) = Ll sk =1.
i (n, d) ;(np+) s.t. ||

n T

:> min E(n) = Y (@'p;—n'p)? =) m'p;)? st nfl=1

=1 g—1



Principal Component Analysis

e Use Laplacian form:

T

mmE (n) = Z(n p;—n'p)? Z(n—rﬁi)g, gh |l = 1

— |

|:> nﬁu(Z(n p:)’+A(1—n n)) = n}in(nTCn%—)\(l—nTn))

(3

® c_vy pp’ ISthe covariance matrix of the given point set.
° bettmg the partial derivative of the above expression w.r.t n to zero, and
using rules of matrix differentiation, we arrive at:

2Cn — 2Zxn=10 = On.= Xn.

e Thus, n 1s one of the eigenvectors of covariance matrix C.



Principal Component Analysis

e Principal component analysis finds orthogonal axes that represent the
input points well in terms of linear structures

y4




PCA: Problem & Solution

e We need to find the directions that represents our data best.
e The variance of the projected pix,its  measures how far they are spread
away from the center

var(/ Z |} — m]|?.
e m is the mass(centroid of point m= Zx
e Define the direction of line 1 by ., __Z'__sume that v 1s normalized.

® So we can replace the projected p5nts i the expression of covariance:

"
= (v, ¥:)| = |v il

(v,x; — m)‘

v



PCA: Problem & Solution

T T

1 1 1
var(f) = - Z |x; — m|?® = x> Z(VT)H:)Q = EHVTYHQ
1 1 1
= —_(vY)V'Y) = vTYY v = Z(Sv,v).
n n n

e S is the scatter(covariance) martrix:
| |

Ni, ¥z #: Y'n,:| Mg — Ny
| |

e Eigenvaluer, , = ), Eigenvevy, vy ... vy,

e The extremal values ot the variance are, theretore:

S=YY" Y =

S = Qo ) = Xl i) =N



Singular Value Decomposition

e (iven a transformation A, let’s see what it does geometrically:
e If we are lucky, tha=vaAvT , V being orthogonal, meaning 4 1s
symmetric, and the eigenvectors of 4 are axes of the ellipse:

2\
D&

o The eigendeCOulyuoluuu UL 1\ LULID UD VY ILIULIL UL Luusunal cXECS lt Scales.




Singular Value Decomposition

e However, in general, 4 also contains rotations, not just scaling along

orthogonal axes
N — A7)
N %

® A then looks lik~ #»-

o
T2
A= (a2 -+ uy) 3 (Vi vy -+ vy




Singular Value Decomposition

A U b3 v

e 2'1s a matrix with values on diagonal that are real and nonnegative
e [/ and V are orthogonal matrices
e SVD exists for any matrix of any dimension
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SVD: Algorithms

e Solutions:
m Golub Kahan
m Jacobi Rotation
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SVD: Algorithms - Golub Kahan

Pipeline:

1. Householder transformation, convert it to a bidiagonal matrix
2. QR algorithm to approximate the eigenvalue of this bidiagonal
matrix

a bidiagonal matrix is a matrix with non-zero entries along the main
diagonal and either the diagonal above or the diagonal below

o O b =
o W ke O
= © O
w o o o
o o o =
o O =
o W= o
W o O
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SVD: Algorithms - Golub Kahan

e A Householder matrix P:

P=1-2wuw’,|w?’=1

P =(1-2w-w") - (1-2w-wh)
=1 — 4w -w! + 4w (w' - w) - wh
=1

e Theretore:

P =Pt
Pr =P
e P 1s orthogonal
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SVD: Algorithms - Golub Kahan

e (Change a form:
H

u-u
P=1-
H
1
H:E\’U’P

e Now u can be any vector. Assume x 1s the first column of matrix A4

u =x + |z|eg
eo =[1,0,0,....0]"

14



SVD: Algorithms - Golub Kahan

e We have
P-m:$%-(m+|m|eg)T-m
2u - (|z|” + |z|zo)
N olz|? + 2|x|z
=T — U
=|z|e

e So we can convert all elements 1n first column of A to 0 except the first
one.
e And then we can iteratively convert A to a bidiagonal matrix.
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SVD: Algorithms - Golub Kahan (quote)

(1) B5EHiE—1 Household 4% H, € R™*™, fififg H1 A W58 —5 kR
BRI HESEHNZ, B

EE R

0 % % --- %

H{A = 0% % -+ x|

0 % % -~ &

W E, PRI R R, GEFETS/BUE LA



SVD: Algorithms - Golub Kahan (quote)

(2) FHaE—4 Household 4[4 H, € R(n—Dx(n=1) 3w I A sS—47
%6 3 25 n T InRAAE, B

xx0--- 0
0% % rue %
H A 19 — |[D%dk o k]
0 Hy _
LU TR )

(3) EE b pyidFe, HEHE A B2 XN MR,

W, PRI REEER,  GERE S AUE 2D
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SVD: Algorithms - Golub Kahan (quote)

AT A = (U BVE)TUBVT = Vi BTBVT,

i ViPAT AV, = BYB. T BT B X=X /A0, B LX A 24 5%
AL A =X} fa4k.

AT A RRRIBEER AN 4mn® + 4mPn — 4n? /3, BATFEITE
Uy i Vi, W3S R K Amn? — dnd /3.

W, PRI REEER,  GERE S AUE 2D
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SVD: Algorithms - Golub Kahan (quote)

 CRRERHERES R

B e R B—A_XfA¥EMKEB =

W E, PRI R R, GEFETS/BUE LA

aq bl
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SVD: Algorithms - Golub Kahan (quote)

é'\ TBTB — BTB) Ij\"J

4 Tppr = BB", M|

_a% + b% a2bq

a% albl

a1bq CL% = b%

TBBT = azb TBTB = ,
a3 0 g b Oy ~19n—1
Anbn_1 a? L n-1bn-1 a5, + b?z—l_
Trpr BHSAEE N B MZE B ET, H Typr WEER &R B Tprp WFHEME A B 37 SE W F 5, H Tprp BFFHIER 88 B
2 A S I A & ) 2.

W E, PRI R R, GEFETS/BUE LA
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SVD: Algorithms - Golub Kahan

In application: use QR algorithm to calculate the eigenvector

Any real square matrix 4 may be decompc 4 = QR

0 1s an orthogonal matrix and R 1s an upper triangular matrix
Formally, let A be a real matrix of which we want to compute the
eigenvalues, and let A,:=A. At the k-th step (starting with £ = 0), we
compute the QR decomposition 4,=0,R, where 0, 1s an orthogonal

matrix (1.e., O7 = O 1) and R, 1s an upper triangular matrix. We then form
A, = R.0,. Note that

Apir = RiQ = Q. QrRiQr = Q' ArQr = QF Ar Qs

so all the A4, are similar and hence they have the same eigenvalues. The
algorithm 1s numerically stable because it proceeds by orthogonal
similarity transforms.
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SVD: Algorithms - Golub Kahan (quote)

e Why we use QR?
e For common matrix, one iteration of QR decomposition cost O(n"3)
e But for tridiagonal matrix, time cost 1s O(n)

xR QRIEREEMIZEE }
o =Xk An® /3 + O(n?), FFaiH B4R &, WK 8n/3 + O(n?);
o X T i AR EE R QR B, HUGERIIBEE R 6n;
o JHEARAEM, BB A THER 2 28, MEBEERA 120
o EEE T MBI R AEME AT 7] B, WS EEH 6n° + O(n?);
o HREIE AMPTAREME BERN 40°/3 + O(n?);
o FFHE A W BTARHE AT R &, WS EE N 26n° /3 + O(n?);

W E, AR RSERE AR, GERRS/BUE LA



SVD: Algorithms - Jacobi Rotation (quote)

(EABE: | @it — R FI Jacobi MEFE 4 A IEATHIIT— A x4 B

AV = A AFHD — JTAR . k=0,1,...,
H AR 83— a4 RE, Hordr J), 4 Jacobi Jig#hs, Bl Givens 25 #:

Tk Tk
B
o cosfy --- —sinfy .
Jr = G(?’k:jkaak) — . . . k
sinfp --- cosfOy Jk
I o

W s, RARIMRSER AR, GERETES/BUE LA EARED



SVD: Algorithms - Jacob1 Rotation

e Givens Transformation, Consider:
b
5 ¢ bl |0
c+ajr
8+ —b/r.

r=+/a" +0b
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SVD: Algorithms - Jacobi Rotation (quote)

SIIE &% A € R2X2 R st #4EME, M| A 4 Givens T3 G € R2X2 {#483

GTAG At k.

T AR AC) O] — XY f I, SETERY F G SR 0.
JEL Off(A) g AT 6 0 76 HOF: T A, B
off(4) = 3 o, = A% - a2,
i#j i=1
A9 F AR5 off( A) St T 0,

BITE & A = [aijlnxn € R™™ ZHER, A = [dij]nxn = JTAJ,

J=G(i,5,0), £ F 0 4 BAEF 6;; = a;, =0, M
off(A) = off(A) — 2a2,.

(& 41)

W, R RZEBEER,  GERFTFS/AUE 2 EAED

(A& F)
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SVD: Algorithms - Jacobi Rotation (quote)

B % 1.1 Jacobi #HR A &+

1: Given a symmetric matrix A €

RTLXH

2: if eigenvectors are desired then [ ;i H@ﬁﬂ}llﬁl%ﬁ ]

3: setJ =Jandshift=1
4: end if

: while not converge do

— P B AR IO 3B RAEAR a,; A A AEXT fA oG R Hh 4 X (B B K B —
AN, X FL A48 4 Jacobi By,

choose an index pair (¢, j) such that a;; # 0

t =sign(t)/(|7| + V1+72) % % tand

5
6
7: T = (@ —%3)/(26:3)
8
9

: c=1/V1+8,s=c-t
10 A=G(,7,0TAGS, 5,0)
11: if shift =1 then

12: J=J - G530

13: end if

14: end while

% ¥ Givens A% i
% S BRit S A 7 B B R

W E, EARIRSE R,

CREFRTH S/ BE 2R MR
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SVD: Algorithms - Jacobi Rotation (quote)

A DLIERH, 22 Jacobi S9% 2 /D e P LS Y.

TEIE T2 Jacobi HiE 12, A

1 —
off(A+D) < (1 - N) off( AR), N = ”(”2 ).
WkYERE A
15" 1 k"
off(A®)) < (1 - N) off(A®)) = (1 - ﬁ) off(A).

(A& H)

W, R RZEBEER,  GERFTFS/AUE 2 EAED



Application

Find bounding box

Approximate normal of point cloud

Shape matching

3D animation compression by principal components

TensorTextures: multilinear image-based rendering
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Find bounding box

Y4

e 0
0@

m.-m.XP e o

minY

R |

(2)



Approximate normal of point cloud

- Compute the PCA of its local neighboring points

- The direction of the normal i1s simply the direction of the third
elgenvector, corresponding to the smallest eigenvalue.
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Shape matching

- Align two shapes In correspondence by a rigid transformation

31



Shape matching - formalization

Align two point sets

P={p,....,p,} and O={q,, ..., q,}.

Find a translation vector t and rotation matrix R such that:

Zn: Hpi —(Rq; + t)H2 is minimized
i=]

32



Shape matching - solution

It turns out that we can solve for the translation and rotation
separately.

If (R, t) is the optimal transformation, then the points {p;} and {Rq; +
t} have the same centers of mass.

n

1 1 a
—F E Rqg;+t)=R —E q | +t=Rq+t,
p n ( ) (ni_l ) ;

J -
1=1
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Shape matching - solution

To find the optimal R, we bring the centers of both point sets to the
origin:

Pi < Pi—D qi < 4i — P

Now we want to find R that minimizes

n
S llpi — Ra|2
=1
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Shape matching - solution

Given the orthogonality of R, we have RTR = I and hence

n

Y lpi—Raill* =D (pi — Rai)'(pi — Ray)
=1 =

= pi'pi—pi' Rqi —q;' Rpi +q;' k' Rq,
i=1

= pi'pi—pi' Rai—q;'Rpi +q;'q;.
=1
where the first and last terms do not depend on R and the middle
two terms are scalars.
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Shape matching - solution

Thus we have

n T
- o Ba: — a Rl = T8 6 - e B
m}%nZ( pi Rqi —qi Rp:) mgXZ(pz Raq; +qi Rp;i)

=1 =1

Since pTRq; = ®TRq)” = pTR"q;, we actually have

n
argmax Z pi' Rq;
R ;
=1

i pi' Rq; = Trace (i Rq; pf) = Trace(

1=1 1=1

R Z Clz'pz'T>

1=1
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Shape matching - solution

- Let .
H=Y qpi
i=1

- So we want to find R that minimizes

Trace(RH)

Theorem: if M is symmetric positive definite (all
eigenvalues of M are positive) and B is any orthogonal

matrix then
Trace (M ) > Trace(BM )
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Shape matching - solution

Now we only need to find R such that RH is symmetric positive
definite. Then we know for sure 7race(RH) is maximal.

Compute SVD of H
H=UzV"

Define R=VU'"

RH = (VvUH(UTV) =vEV!

which 1s symmetric and Its eigenvalues are positive.
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Shape matching - solution

- Summary

Translate the input points to the centroids:
P;=p,—p q;=9q,—q

Compute the “covariance matrix”
H=) qp/
i=1
Compute the SVD of H:
H=UxV"'

The optimal rotation is

R=VU"

The translation vector is

t=p—-Rq
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3D animations compression

- Each frame 1s a 3D-model
- Geometry — 3D coordinates of the vertices

- When the number of vertices Is huge, how to represent It?

w%\\;ggu "'
‘\\ 4% d
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3D animations compression

Only describe key frames B;.

Additional frames are generated by interpolation between two
consecutive key frames. A(t) = ).; a;(t) - B;.

Still there Is some redundancy.

3N x f "




3D animations compression

Find a few new vectors in R3" that can best describe our frames.

T
U 3Nxf Y fxf V' txf

=]
o
-
|
l
Q
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3D animations compression

- Taking the first k principle components

- According to the property of SVD, It Is the best rank k

approximation of the original matrix.

X

X

Vi

D v

\/f’v

Q

o,

0,

|

VT




3D animations compression

Approximate each frame by linear combination of the first a few
principal components.

S E g

al ------------ :

az ------------ xN
N
y as ------------ yl
: oW uy |us » T ooy oo Uy oo
VN yN
z, &

ZN
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TensorTexture: purely image-based rendering

- A framework that learns a parsimonious model of the bidirectional
texture function (BTF) from observational data.

- BTF is a function of six variables (x,y, 6, ¢, 6;, $;), where (x,y) are
surface parametric (texel) coordinates and where (6,, ¢,,) is the
view direction and (8;, ¢;) is the illumination direction.

TensorTextures: Multilinear Image-Based Rendering, M. Alex O. Vasilescu and Demetri Terzopoulos
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TensorTexture: Tensor and N-mode SVD

A tensoris a higher order generalization of a vector (1st-order
tensor) and a matrix (2nd-order tensor).

A c ili)l)fli(fgx...XIN

The mode-n vectors are the column vectors of matrix A(n) €
RinXUax Iz--In-1% Int1 -IN) that results from flattening the tensor A

The mode-n product of a tensor A € R!1*z--In -XIN gnd g matrix

M € R/»*In is denoted by A X, M. The result can be expressed in
terms of flattened matrices as B(n) = MA(n).

TensorTextures: Multilinear Image-Based Rendering, M. Alex O. Vasilescu and Demetri Terzopoulos
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TensorTexture: Tensor and N-mode SVD

- The N-mode SVD is a generalization of the SVD that
orthogonalizes these N spaces and decomposes the tensor as the
mode-n product of the N orthogonal spaces:

D:ZX1U1 XQUQ...XnUn...XNUN

- Tensor Z, known as the core tensor, is analogous to the diagonal
singular value matrix in conventional matrix SVD.

U,, contains the orthonormal vectors spanning the column space of
the matrix D (n) that results from the mode-n flattening of D

- SVD can be rewritten as D =S x; Uj x2 Us

47
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TensorTexture: Tensor and N-mode SVD

- (Calculate N-mode SVD

Our N-mode SVD algorithm for decomposing D according to
equation (1) is as follows:

1. Forn=1,..., N, compute matrix U,, in (1) by computing

! !

the SVD of the flattened matrix D ,,) and setting U,, to be the
left matrix of the SVD.’

2. If it is needed, solve for the core tensor as follows:

T T f 5 T
Z:DX1U1 XQUQ ---XnUn---xNUN-

TensorTextures: Multilinear Image-Based Rendering, M. Alex O. Vasilescu and Demetri Terzopoulos
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TensorTexture: Tensor and N-mode SVD

Analogous to the optimal dimensional reduction in PCA resulting
from the truncation of eigenvectors

Here it admits similar scheme and offers more control, enabling a

tailored truncation of each mode. R,
D=ZX1U1XZU2X3U3 Q
13 R3 13
L KRy 'ﬂ:f_{i_ l _
D _ EE R,
| : : : 17
I I_U_‘___:X R///{P/ I Y

TensorTextures: Multilinear Image-Based Rendering, M. Alex O. Vasilescu and Demetri Terzopoulos
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TensorTexture: multilinear rendering

- Given an ensemble of images of a textured surface, we define an
image data tensor D € RT*IXV

-V, I.number of different view and illumination conditions

- T:the number of texels in each texture image Views l

IIluminations

V=37 I=21 T=240 x 320 x 3 = 230400

50
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TensorTexture: multilinear rendering

Apply the N-mode SVD algorithm to decompose this tensor D €
R2304OOXZ1X37.

D — Z X1 Ut—exel X2 Uillum X3 Uview

Analogous to the standard SVD A = UDVT, where the column
vectors of U span the view space,

The column vectors of the 37 x 37 mode matrix U,y Span the
view space. The rows of U,;.w encode an illumination and texel in-
variant representation for each of the different views.

51
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TensorTexture: multilinear rendering

The column vectors of the 230400 x 777 mode matrix Uexer SPan
the texel space and are, in fact, the PCA eigenvectors (i.e.
‘elgentextures” ) since they were computed by performing an

SVD on the matrix D(texel) obtained by mode-1 flattening the data
tensor D

Eigentextures

Texels

52
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TensorTexture: multilinear rendering

- TensorTextures models how the appearance of a textured surface
varies with view and illumination:

T — Z X1 Utﬁxel

T 4 &
— D X 2 Uﬂlum X3 Uview

View
Variation

Illumination
“" Variation

Texels

TensorTextures: Multilinear Image-Based Rendering, M. Alex O. Vasilescu and Demetri Terzopoulos



TensorTexture: multilinear rendering

- It decomposes the image ensemble into 37 x 21 basis vectors of the same
dimension, and represents each image by two coefficient vectors, one of
length 37 to encode the view and the other of length 21 to encode the
Illumination.

View
Variation

[llumination
Variation

TensorTextures: Multilinear Image-Based Rendering, M. Alex O. Vasilescu and Demetri Terzopoulos
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TensorTexture: multilinear rendering

- TensorTexture basis leads to a straightforward rendering algorithm. To render
an image d, compute

d="7T X9 lT X3 VT
- where v and | are the view and illumination representation.

- GIven a novel view direction, find the three nearest observed view and
represent the novel view as a convex combination of them.

TensorTextures: Multilinear Image-Based Rendering, M. Alex O. Vasilescu and Demetri Terzopoulos
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