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Principal Component Analysis
● Start from a problem in least-square solution, fit one line
● Minimize the total distance from all points to the line.

● line l : 
● Similar to previous solution:
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Principal Component Analysis

●                      is the centroid of the given point set P .
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Principal Component Analysis
● Use Laplacian form:

●                    is the covariance matrix of the given point set.
● Setting the partial derivative of the above expression w.r.t n to zero, and 

using rules of matrix differentiation, we arrive at:

● Thus, n is one of the eigenvectors of covariance matrix C.
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Principal Component Analysis
●  Principal component analysis finds orthogonal axes that represent the 

input points well in terms of linear structures
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PCA: Problem & Solution
● We need to find the directions that represents our data best.
● The variance of the projected points      measures how far they are spread 

away from the center

● m is the mass(centroid of point set) :
● Define the direction of line l by v, and assume that v is normalized.
● So we can replace the projected points     in the expression of covariance: 
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PCA: Problem & Solution

● S is the scatter(covariance) matrix: 

● Eigenvalues:                          Eigenvectors:
● The extremal values of the variance are, therefore: 
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Singular Value Decomposition
● Given a transformation A, let’s see what it does geometrically:
● If we are lucky, then                   , V being orthogonal, meaning A is 

symmetric, and the eigenvectors of A are axes of the ellipse: 

● The eigendecomposition of A tells us which orthogonal exes it scales.
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Singular Value Decomposition
● However, in general, A also contains rotations, not just scaling along 

orthogonal axes.

● A then looks like this:
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Singular Value Decomposition

● Σ is a matrix with values on diagonal that are real and nonnegative
● U and V are orthogonal matrices
● SVD exists for any matrix of any dimension
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SVD: Algorithms 
● Solutions:

■ Golub Kahan
■ Jacobi Rotation
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SVD: Algorithms - Golub Kahan
Pipeline:

1. Householder transformation, convert it to a bidiagonal matrix
2. QR algorithm to approximate the eigenvalue of this bidiagonal 

matrix

a bidiagonal matrix is a matrix with non-zero entries along the main 
diagonal and either the diagonal above or the diagonal below
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SVD: Algorithms - Golub Kahan
● A Householder matrix P:

● Therefore:

● P is orthogonal
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SVD: Algorithms - Golub Kahan
● Change a form:

● Now u can be any vector. Assume x is the first column of matrix A
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SVD: Algorithms - Golub Kahan
● We have

● So we can convert all elements in first column of A to 0 except the first 
one.

● And then we can iteratively convert A to a bidiagonal matrix.
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SVD: Algorithms - Golub Kahan (quote)

潘建瑜，华东师范大学数学系，《矩阵计算/数值线性代数》
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SVD: Algorithms - Golub Kahan (quote)
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SVD: Algorithms - Golub Kahan
● In application: use QR algorithm to calculate the eigenvector
● Any real square matrix A may be decomposed as
● Q is an orthogonal matrix and R is an upper triangular matrix
● Formally, let A be a real matrix of which we want to compute the 

eigenvalues, and let A0:=A. At the k-th step (starting with k = 0), we 
compute the QR decomposition Ak=QkRk where Qk is an orthogonal 
matrix (i.e., QT = Q−1) and Rk is an upper triangular matrix. We then form 
Ak+1 = RkQk. Note that

● so all the Ak are similar and hence they have the same eigenvalues. The 
algorithm is numerically stable because it proceeds by orthogonal 
similarity transforms. 21



SVD: Algorithms - Golub Kahan (quote)
● Why we use QR?
● For common matrix, one iteration of QR decomposition cost O(n^3)
● But for tridiagonal matrix, time cost is O(n)

潘建瑜，华东师范大学数学系，《矩阵计算/数值线性代数》 22



SVD: Algorithms - Jacobi Rotation (quote)

潘建瑜，华东师范大学数学系，《矩阵计算/数值线性代数》
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SVD: Algorithms - Jacobi Rotation 
● Givens Transformation, Consider:
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SVD: Algorithms - Jacobi Rotation (quote)

潘建瑜，华东师范大学数学系，《矩阵计算/数值线性代数》 25



SVD: Algorithms - Jacobi Rotation (quote)

潘建瑜，华东师范大学数学系，《矩阵计算/数值线性代数》 26



SVD: Algorithms - Jacobi Rotation (quote)

潘建瑜，华东师范大学数学系，《矩阵计算/数值线性代数》 27



Application
- Find bounding box

- Approximate normal of point cloud

- Shape matching

- 3D animation compression by principal components

- TensorTextures: multilinear image-based rendering
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Find bounding box
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Approximate normal of point cloud
- Compute the PCA of its local neighboring points

- The direction of the normal is simply the direction of the third 
eigenvector, corresponding to the smallest eigenvalue.
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Shape matching
- Align two shapes in correspondence by a rigid transformation
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Shape matching - formalization
- Align two point sets

- Find a translation vector t and rotation matrix R such that:
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Shape matching - solution
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Shape matching - solution
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Shape matching - solution
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Shape matching - solution
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Shape matching - solution
- Let 

- So we want to find R that minimizes
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Shape matching - solution
- Now we only need to find R such that RH is symmetric positive 

definite. Then we know for sure Trace(RH) is maximal.

- Compute SVD of H

- Define 

- which is symmetric and its eigenvalues are positive.
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Shape matching - solution
- Summary
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3D animations compression
- Each frame is a 3D-model

- Geometry – 3D coordinates of the vertices

- When the number of vertices is huge, how to represent it?
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3D animations compression
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3D animations compression
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3D animations compression
- Taking the first k principle components

-  According to the property of SVD, it is the best rank k 
approximation of the original matrix.
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3D animations compression
- Approximate each frame by linear combination of the first a few 

principal components.
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TensorTexture: purely image-based rendering
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TensorTextures: Multilinear Image-Based Rendering, M. Alex O. Vasilescu and Demetri Terzopoulos 
 



TensorTexture: Tensor and N-mode SVD
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TensorTexture: Tensor and N-mode SVD
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TensorTexture: Tensor and N-mode SVD
- Calculate N-mode SVD
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TensorTexture: Tensor and N-mode SVD
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TensorTexture: multilinear rendering
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TensorTexture: multilinear rendering

51
TensorTextures: Multilinear Image-Based Rendering, M. Alex O. Vasilescu and Demetri Terzopoulos 
 



TensorTexture: multilinear rendering

52
TensorTextures: Multilinear Image-Based Rendering, M. Alex O. Vasilescu and Demetri Terzopoulos 
 



TensorTexture: multilinear rendering
- TensorTextures models how the appearance of a textured surface 

varies with view and illumination:

53
TensorTextures: Multilinear Image-Based Rendering, M. Alex O. Vasilescu and Demetri Terzopoulos 
 



TensorTexture: multilinear rendering
- It decomposes the image ensemble into 37 × 21 basis vectors of the same 

dimension, and represents each image by two coefficient vectors, one of 
length 37 to encode the view and the other of length 21 to encode the 
illumination. 
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TensorTexture: multilinear rendering
- TensorTexture basis leads to a straightforward rendering algorithm. To render 

an image d, compute 

- where v and l are the view and illumination representation.

- Given a novel view direction, find the three nearest observed view and 
represent the novel view as a convex combination of them.
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TensorTextures: Multilinear Image-Based Rendering, M. Alex O. Vasilescu and Demetri Terzopoulos 
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