Linear System

=
12.17



Outline

e Direct Method
e Gaussian elimination and LU decomposition
e Cholesky decomposition
e [terative Method
e Basic stationary methods
e Smooth mulitgrid Solver

* Krylov subspace methods



Problem

 Solve Linear Equation

Ax = b,



Gaussian elimination and
LU decomposition

1. LU decomposition: A = LU ;
2. Forward substitution: solve Ly = b ;

3. Backward substitution: solve Ux =y .

Forming the LU decomposition takes O(n?) floating point op-
erations for a general dense A € R™™". It takes O(n?) floating
point operations to perform backward or forward substitutions.



Gaussian elimination and
LU decomposition

Algorithm 1 The LU decomposition of a matrix A. Upon exit,
the entries of A have been overwritten with the entries of L (below
the main diagonal) and the entries of U (main diagonal and above).
The diagonal entries of L are all equal to 1.
for k=1,....,.n—1do
fori:=k+1,...,ndo
Qik = g2
for =k+1,...,ndo
Ujj = Qj,j — A kAk,j
end for
end for

end for




Cholesky decomposition

e special method for symmetric positive definiteness matrix

A=FF"



Cholesky decomposition

Algorithm 2 The Cholesky decomposition of a symmetric posi-
tive definite matrix A. Upon exit, the entries of A on its diagonal
and below it have been overwritten with the entries of the lower
triangular Cholesky factor F'.
for k=1,...,ndo
Ak k = /Qk,k

fori=k+1,....,ndo

o = 5
end for
for ) =k+1,....,ndo
for:=7,...,ndo
U5 = Qj,j — QA4 kAk,j
end for
end for

end for




Analysis of an Electrical
Network

Kirchhoff's circuit laws

k=1




1D Smooth filter

Let v be the sum of a smooth 1D signal » and IID Gaussian noise e:
v = u+e, <

where u = (uq,...,uy), v = (v1,...,vy),and e = (eq, ...,ex).

e minimize the following objective

1‘7\"7 i\"r —1

E(u) = Z(Un — )t + A Z(Unﬂ — )’

n=1 n=1



1D Smooth filter

e minimize the following objective

\ N-1
B(w) = ) (un—va) + X ) (uns1 = up)’
n=1 n=1

e calculate the gradient

0 FE(u)
0 uy,

= 2 (u-n. — Un) + 2A (_U’n,—l + 2u, — u71+1>

Uy + A <_un—l T 2u'n o u"lH-l) — Un



1D Smooth filter

/1+)\ —A 0 0O ... 0 \ /ul\ /vl\

—A 14+2A —\ 0 ... 0 U9 V9
O —/\ 1 -+ 2)\ —)\ C. O us U3
\ 0 0 =\ 1—|—)\/ \U\/ \’UN/

O(n) by using Gaussian Elimination



Nonzero structure and
sparsity pattern

e Narrow-banded matrices

e tridiagonal matrices O(n) for Gaussian Elimination

ai b1
ci as b



nonzero structure and
sparsity pattern

the discrete two-dimensional Laplacian arising from discretization of the Poisson equation on
a uniform mesh on a square domain

e The matrix has approximately 5n nonzero entries
e but the Cholesky factor contains about O(n*sqrt(n))

e the decomposition is O(n”"2) floating-point operations
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Basic stationary methods

Basic stationary methods

Given Ax = b, suppose A = M — N. We have Mx = Nx + b,
which may lead to the iteration

Mxp1 = Nx;p+b.

This is a stationary or a fixed-point iteration.



Jacobi Method

a1 0
0 a2

A=D+ R where D =
0 0

and R =




Gauss-Seidel Method

A=L,+U

xF) = L7 (b — UxW).

where

L, =

aii
az; Qa2 c--
L Ap1 QApg

0 0
U — . .
0 0

0 ayjg -

A1n

' aon




Basic stationary methods

e Jacobi Method: Highly Parallelizable
e Gauss-Seidel Method: Faster Convergence Speed

* |n some cases(eg. processing Images), Gauss-Seidel
Method is also highly parallelizable

e Black and white coloring

1—1

S Y kD) N (B .
T, a_ii<bl Zawxj j;la”a:j ), 1=1,2,...,n.

J=1




Convergence of iterative
methods

e convergence is governed by the eigenvalues of the iteration matrix
—1 —1
T'=M""N=1-M"A

A necessary and sufficient condition for convergence is that the
eigenvalues of T are all smaller than 1

e The smaller the maximal magnitude of the eigenvalues, the faster
the convergence

e |f some of the eigenvalues of T are very close to 1, then we may
experience trouble. Unfortunately, this is often the case in many
applications, particularly in the solution of discretized PDE.



Krylov subspace methods

e Find solution in Krylov sub space

X € X + /Ck(A; rg) = X + span{rg, Arg, A%rg, . .. ,Ak_lro}

e Conjugate Gradient

e Minimize the following quadratic function

f(x) = %XTAX —x'b, x e R".

Vif(x)=A, Vf(x)=Ax—b.



Direct Conjugate Gradient
Method

n
X*:Zaipz’- Vi#k: (p.,P;)a =0
i=1
Based on this expansion we calculate:

L <pk7b> — O <pk7pk>A
Ax, = ZaiApz-.
1=1

- I i T.
Left-multiplying by p) : . (Pr, b)
k p—

p-]!;A.X* — ZangAp“ <pk7pk>A
1=1

substituting Ax, = b and uT Av = <u’ V>A:

n
p.b = Z G (P> Pi) A
i=1



Conjugate Gradient Method

', — b — Axk.
p,; Ar;
Pr =Tk — ) ————DP;  flxe) = flxi +aupi) = glou
i<k Pj Ap; . B p; (b — Axy)

Xip+1 = Xk + O Pi

B pg (b — Axy) P, Tk
P;cr Ap, PZ Ap,

89"



Conjugate Gradient Method

g :— b — AX()
Py :— To
- The Algorith
repeat e gOrI m
rgrk
oL 1—
) PZAPk

if .1 is sufficiently small, then exit loop

T
B, = Tit1Th+1
k -— T

I'k | 5

Pri1 i= Tki1 + BrPy
k=k+1

end repeat

The result is x4



Conjugate Gradient Method

Convergence theorem V4

Define a subset of polynomials as

Iy :={pell; : p(0)=1},

where I, is the set of polynomials of maximal degree k.

Let (Xk)k be the iterative approximations of the exact solution Xy, and define the errors as e, := X — X,. Now, the rate of convergence

can be approximated as °!

lex || a = min [[p(A)eo || o

gﬁ max_|p(\) fleoll s “(A) = || 4]|||A 1H

pell;, Aeo(A)

k(A) —1 ¢
§2<\/m+1> HeOHA7

where o(A) denotes the spectrum, and k(A.) denotes the condition number.

Note, the important limit when (A tends to 0o

w(4) 1 zl—L for k(A)>1.
k(A)+1 k(A)

2
k(A)

This limit shows a faster convergence rate compared to the iterative methods of Jacobi or Gauss-Seidel which scale as ~ 1 —



Krylov subspace methods

e CG proceeds by defining special search directions and
minimizing

lella = y/ef Aey, where e = x — x;

f(x) = %XTAX —x'b, xcR".

e \We can also minimize the norm of the residual
Hb — AX L ||2

e MINRES or GMRES



Image Operator with
Laplacian Equation

Af — f:cx -+ fyy

= fe+1,y) —2f(x,y)+ f(z — L,y) + f(z,y + 1)

o Qf(ilf,y) +f(£13,y o 1)
= fle+Ly) + f(z=Ly) + f(z,y+1) + f(z,y—1) —4f(2,9).

1 1 -4 1 1 ...
1 1 -4 1 1 O
| -4 1 1 || fa
0 IKXK

e
0
1




Image Operator with

Possion Equation

11 -4 1 1 ... ..
1 1 —4 1 1
...... 1 —4 1] 1
0 1§78 ¢

Th

L Jn




Poisson Image Matting




Poisson Image Matting

Vi=F-B)Va+aVF+(1—-a)VB

e Assume that F and B is very smooth

1
F—B

\2

Vo ~



Poisson Image Matting

e We minimize the following variational problem with
dirichlet boundary a|yq = |50

(0.4

|
o = ar min// Vo VI ||*d
emin [ [ Vo~ Vil Pap

e Use Euler-Lagrange Equation

OF d OF _
of dz of

b
7= [ P f@), 1 @)de —>



Poisson Image Matting

e Use Euler-Lagrange Equation

b OF d OF
T= [ Faf@), £ @) de = Fr— g =0

e Poisson Equation

Aot = div( Vi ) Linear system !!!




Multigrid Method(Z EN1&;%)

o Use Gauss—Seidel as Smoother

Multigrid V-Cycle: Solving PHI in PDE f(PHI) = F

PHI F R R1 R2 R PHI
AP FEFETT
K. . Gauss Seidel _| ‘

”‘: i HHH ! H o
ﬁw:m e Residua : Correct >
sasaas! N Sasssassas) TAT

o «
o o y EEEEEE
Gauss Seidel Gauss Seidel ]4=-|
o
* s Correct 1

[ |

Gauss Seidel 5.51 Se}del

1
Correct }

Gauss Seid
SetR=0

Repeat Until Convergence



Multigrid Method(Z & W1& ;%)

o Use Gauss—Seidel as Smoother
e The Complexity of this algorithm is (J(71)

e |t is widely used in image processing and solving PDE



Weighted Least Squares
Filter

e Edge preserving Smoother by WLS

WLS: o =12,A =025  WLS:a =18 4=0.35



Weighted Least Squares
Filter

e Edge preserving Smoother by WLS

;((u,,_g,,)z a(ax,p@) (3—); -r (g—y)j))

= (u—g) ' (u—g)+A (uTD_ﬂ\.r AxDyu+ uTD;.r Ay Dy u)

(I+ALy) u=g L, = DIADy + D} A,Dy

o —1
+e) ,

ot

ol —1
ax(p) +8) ayp(g) = ( g—ﬁ(p)

asp(6) = (



Weighted Least Squares
Filter

e Edge preserving Smoother by WLS

(I + /ng)I/l = g Linear system !!!

* Use Multigrid Method to solve in o(H x W) time



which method should we
use”?

Dense or Small symmetric positive definite

Gaussian Elimination

Cholesky
decomposition

Iterative Method

Conjugate gradient

the Bunch-Kaufman
algorithm

MINRES

GMRES - -



Combination of these
methods

e use Multigrid method to get a good initial solution

e then use conjugate gradient method to refine the solution



