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Problem && Algorithm

* Given a Point set, P:= {p;} (p; = z1,%9,...,z4) find the best fit
hyperplane
f(X) =wxy +wezs + ... + wyzyg + €

X={1 =z, z .. z4 }T

WT={C, wi, W, ... wd}

* Suppose model from which data 1s observed. A(x) = w/x



Problem && Algorithm

* Error measure : squared error

how to minimize E(w)?



Matrix Form of Em(vv)
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1
min E(w) = < [lXw -yl

* E(w) : continuous, differentiable, convex

* necessary condition of best w:
~0E (W) 0-
ow,
JE(w)
* VE(w) = ow, |~ 0
OE (W) 0 Ein
- 0w, - o
1 T T
e VE(w) = =02X" Xw—-2X"y)

N



* Minimizing w yields the equation
X' Xw=X"y
. Invertible X™X:
o WLIN — (XTX)_IXT:U
+ P=X(XTX)"'XT Symmetric and orthogonal

- Py(= Xw) is orthogonal to the residual r = y — Py
. solution Is not unique
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Optimality

* Gauss-Markow theorem

If {bi}m and {x;}, are two sets of random variables such that
ei=bj—a;1x)—...— QinXn

and

Al:  {a; ;} are not random variables,
A2: E(e) =0, foralli,

A3: var(e)) = a?, forall i, and

A4:  cov(ej.e;) =0, foralliand j,

then the least-squares estimator,

}:’Lm' (b1,..., bn) = arg n‘_llinz"e,z.

is the best unbiased linear estimator.




Optimality
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Optimality
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Overview
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 Generalized errors



Generalized errors

* The error on the data samples have different variance?

* Assuming that fuar(ei) = 0’3—2

* Weighted least-squares
m

= (= D00 T w;)
arg min E 5

2

_ . 1 1
e Call V=Var(e)™ = dzag(?,..., —)

2 O-'n,

arg mgn(V(Y —wX)T (VY —wX))



Overview

* Least squares

* Robust least squares



Robust Least Squares

* Qutlying point can severely affect least squares estimate
1. Redescending estimators

f(z) = log(1 + 5(2)?) "
f’(fﬂ) Il 20_22_:1:'_ :L_Q




Robust Least Squares

2. lteratively reweighted least-squares

V=1

iterate for i =1...

e; = V(y; — wx;)

V = diag(Je:P~?/2)

wia1 = argmin |[V(Y — Xwy)|
* The algorithm converges for1 < p < 3



Robust Least Squares

3. Least Median of Squares
* Randomly select k points
* Fit the model to these points
* Evaluate quality of fit on remaining points

min med e:
(4



Overview

* Least squares

* Least-squares solutions to large, sparse matrix



L east squares solutions for sparse matrix

* Conjugate Gradient



Conjugate Gradient

1
* Equal problem: min||Az — b||* = min §£L'TATA$ — bl Ax

* A Is symmetric, positive-definite and real
» Two non-zero vector x, y are conjugate if 7T Ay = (

* Supposed D = {dy,dq,...,d,} which is mutually conjugate
respect to A, forms a basis for R", each x can be expressed by:

n
I = E aid?;
=1



Conjugate Gradient

* N Iteration to calculate solution
™
T T
min a A a —b a.:d:
min 5 Zz Za (_Z;zz)
7=

_ 1 24T 3T g
_ahfﬁ?;,nERﬂ ;(2 ?’d?' Ad a?b dZ)

1 1
min _ (=a?d] Ad; — a1b" d;) (§a§dgAd2 — asb’ dy)

al']_j---al'n ER“

1
+...+ (za2df Ad,, — a,b' dy,)

21’11’1



Conjugate Gradient

* [terative Method

1
f(z) = §SIJTASB —z'b

f'(z)=Az —b
* Taking po = b — AXp , enforce p, to be conjugate to the gradient

'rk=b—A:z:k

dETArk
dk=7'k—ZdTAd_da‘
i<k ¢ ¢




Conjugate Gradient

* Following d, direction, the next optimal location Is:




Least Square Solutions

- LSOR



[ SOR

* Lletm = n. For each A € R, there exists a permutation matrix P
€ R« an orthogonal matrix Q € R, «, and an upper triangular
matrix R € R, such that

A R b on .
AP — (o) ( 0 ) } m — N QR'dECGmpDSItIDﬂ_

st. PPT =1 ||QTy|ls = ||yl



[ SOR

* Using properties of Q, let
|Az — b3 = |Q" (Az — b)|)3
= |QT(APP"z - b)3
= [|(Q"AP)PTz — Qb

R
I( ¢ )P Qmo




LSOR

* Putting v = PTx we get

2 _ R\ [ c
IIAI—E)IIE - ( 0 )y ( d )

Ry — cll3 + |13

2

*_|{ By—-c
A N —d

min | Az — bl|5 = myin IRy — c||5 + ||d||3

2

L

* The solution & = Py = PR_IC



[ SOR

* If A has low column rank. LSOQR returns the solution of minimum
length

min || Az — bl|* + X*|lz|13

* LSOR 1s recommended for compatible system Ax = b, but It
should not be used for symmetric matrix.



Implementation

K SciPy.org & :imovenr

Scipy.org SciPy v0.14.0 Reference Guide

Sparse linear algebra (scipy.sparse.linalg)

Abstract linear operators

m modules next previous

Table Of Contents

» Sparse linear algebra
(scipy.sparse.linalg)
o Abstract linear operators

LinearOperator(shape, matvec], rmatvec, ...]J) Common interface for performing matrix vector products

o Matrix Operations
o Matrix norms

aslinearoperator(A) Return A as a LinearOperator. o Solving linear problems
o Matrix factorizations
Matrix Operations o Exceptions
inv(A) Compute the inverse of a sparse matrix Previous topic
expm(A) Compute the malrix exponential using Pade approximation. scipy.sparse. SparseWarning
expm_multiply{A, B[, start, stop, num, endpoint]) Compute the action of the matrix exponential of Aon B. Next topic

Matrix norms

scipy.sparse.linalg.LinearOperator

oner (AL 1, itmax, v, :_w]) Compute a lower bound of the 1-norm of a sparse matrix.

Solving linear problems

Direct methods for linear equation systems:

spsolve(A, b, perme_spec, use_umfpack]) Selve the sparse linear system Ax=b, where b may be a vector or a

matrix.
factorized(A) Retum a fuction for solving a sparse linear system, with A pre-
factorized.
Iterative methods for linear equation systems:
bicg(A, bl, x0, tol, maxiter, xtype, M, ...]} Use BICenjugate Gradient ileration to solve Ax = b

bicgstab(A, bl, x0, tol, maxiter, xtype, M, ...])  Use BlConjugate Gradient STABilized iteration to solve Ax = b
cglA, bl, x0, tol, maxiter, xtype, M, callback]) Use Conjugate Gradient iteration to solve Ax=b

cgs(A, b, x0, tol, maxiter, xtype, M, callback]) Use Conj Gradient Squared iteration to solve Ax=b
gmres(A, b[, x0, tol, restart, maxiter, ...]) Use Generalized Minimal RESidual iteration to solve Ax =b.
Ilgmres(A, bf, x0, tol, maxiter, M, _..]) Solve a matrix equation using the LGMRES algorithm.
minres(A, b, x0, shift, tol, maxiter, ...]} Use MINimum RESidual iteration to solve Ax=b

qgmr(A, b[, x0, tol, maxiter, xtype, M1, M2, ...]) Use Quasi-Minimal Residual iteration to solve Ax=b
Iterative methods for least-squares problems:

Isgr(A, b[, damp, atol, btol, conlim, ...])  Find the least-squares solution to a large, sparse, linear system of




Least Squares Application



* Local surface fitting to 3D points
* Mesh reconstruction
* Skin weights computation from examples



* Local surface fitting to 3D points



Local surface fitting to 3D points

* LS is useful to fit a polynomial to a set of points coming from a
curve.

y = .f(fif)

-]
=] pL

* |tis also important to locally fit a polynomial surface to a set of
points in 3D.
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Local surface fitting to 3D points



Local surface fitting to 3D points

TL

* Forthe problem:  winE(n,d) =Y (@'p;i+d)% st |n| =1

n.d ;
t=1

¢ OE(n,d)/dd = 0 OF(n,d)/0d = 0
= ZZ(nTp,ﬁ—d):O

=5 = —nTZ P;
i

= d:—nTI_),

T

. o | D | S T =~ 32 i} L
. min E(n) = 3 (n'p; —n'p)* = 3 (@'5)%, st [n] =1
i=1 =1

n

min (Z(nTﬁi)z +A(1— nTn)) = min(n'Cn+A(1—n'n))



Local surface fitting to 3D points

. Tie 588 I ey T i _ 2
m&n(Z(n pi)2+A(1-n n)) min(n'Cn+A(1-n'n))  C =Y, p:p

Cn = Xn



Local surface fitting to 3D points



* Mesh reconstruction



Mesh reconstruction

* Mesh reconstruction: construction of a mesh from a set of
samples.

* Given a planar graph with arbitrary connectivity and a sparse set
of control points with geometry, reconstruct the geometry of the
rest of the mesh vertices.



Mesh reconstruction

Z v; =0

(i,7)EE

0 otherwise.

1 =
L.;_j = —% (FJ] c FE

Ix=0, Ly=0, Lz=10



Mesh reconstruction

* |In order to keep sharp features of the mesh, consider we have
some control points:

Vs = (Zs,Ys,25), SE€EC. C = {51,82,..-,8m}

* The system becomes:
Ax=Db

_( L )1 jg=s¢€C
A = ( F ) ; Fi_} = { 0 otherwise

by — 0 k<n
=1 =z, .., N<k<n+m



Mesh reconstruction

* To reconstruct the mesh, we find x that minimizes:
|Ax = b||* = | Zx|? + > |z, — v{?)|2

seC

INn least-sguares sense.
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Mesh reconstruction

O. Sorkine and D. Cohen-Oir.
Least-squares meshes.



* Skin weights computation from examples



SKIn weights computation from examples

* Animating articulated characters such as virtual humans is a
fundamental operation iIn computer graphics and interactive
applications.

* Techniques for rigging character skins by weighting vertices to an
assoclated skeleton are widely used in video games and the
computer animation industry.



SKin weights computation from examples

D. L. James and C. D. Twigg.
Skinning mesh animations




SKIn weights computation from examples

i T .8
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SKIn weights computation from examples



SKIn weights computation from examples

* Estimating vertex weights:

* Given vertex-bone influence sets, {#,} the associated weights are
computed using a least squares approach.

* Weights are constrained by the mesh sequence approximation
equations:

Z (T;;ﬁf)wszp‘;q g S, Z,Wfb:l
be %, b

e |tisofthe form: AWw)=pl) i=1...N



SKIn weights computation from examples

* We consider the augment system:

* Then solve the over-constrained system by |east squares.



SKIn weights computation from examples
* Over-fitting:

* The solution can result In weights with large positive and
negative values.

* TSVD, NNLS



TSVD(Truncated SVD)

* TSVD(Truncated SVD)

* Used to handle ill-conditioning: c(a) = Jmaxr

* How singular value affect the problem solution.



TSVD(Truncated SVD)

* For system:

Ax =25
A =UDV’
O]
UDVT = /] u,
0




TSVD(Truncated SVD)



Conclusion

* Local surface fitting to 3D points
* Mesh reconstruction

* Skin weights computation from examples



Resources

 Course notes on least Sguares
* Fred Pighin
* http://graphics.stanford.edu/~|plewis/Iscourse/

* Learn from data
* Yaser S. Abu-Mostafa

* Leature notes on least Sguares
* Dmitriy Leykekhman
* hittp://www.math.uconn.edu/~leykekhman/courses/MATH3795/Lectures/Lectu

re 8 Linear least squares orthogonal matrices.pdf




Resources

* Sorkine O, Cohen-Or D. Least-squares meshes[C]//Shape Modeling
Applications, 2004. Proceedings. IEEE, 2004: 191-199.

* James D L, Twigg C D. Skinning mesh animations|[C]//ACM
Transactions on Graphics (TOG). ACM, 2005, 24(3): 399-407.
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