Scan Conversion
 - Drawing Lines
 - Drawing Circles

How to Draw This?

Start From Simple

How to draw a line: $y(x)=m x+b$?

Scan Conversion, a.k.a. Rasterization

Ideal Picture

Raster Representation

Scan Conversion: Process of converting shapes to raster

Scan Conversion Algorithms

- A discrete set of pixels can only approximate a continuous geometric object
- This means that scan conversion usually introduces error
- Properties of good scan conversion algorithms:
- Accuracy
- Efficiency
- Challenges
- Modify all the right pixels
- Modify only the right pixels
- Calculate their values correctly
- Do it quickly
- So, start with a correct algorithm and optimize it

A Really Simple Line Algorithm

- Equation for a line: $y(x)=m x+b(0<=x<1)$
- Step along one pixel at a time in the "fast" direction, here x direction, fill in one pixel per column
- So, just evaluate for each x

```
void line (int x0, int y0, int x1, int y1){
    float m = whatever;
    float b = whatever;
    int x;
    for(x=x0;x<=x1;x++) {
        float y= m*x + b;
        draw_pixel(x,Round(y));
    }
}
```

- Certainly correct, but slow:
- integer add, cast to float, floating multiply and add, plus round every step.

Lines: DDA Algorithm

- Optimize the previous to remove multiply from inner loop.
- If we know $y(x)$, we can calculate $y(x+1)$:

```
\(y(x+1)=m x+m+b=y(x)+m\)
void line (int \(x 0\), int \(y 0\), int \(x 1\), int \(y 1)\{\)
    float \(y=y 0\);
    float \(m=(y 1-y 0) /(f l o a t)(x 1-x 0) ;\)
    int \(x\);
    for ( \(x=x 0 ; x<=x 1 ; x++\) ) \{
        draw_pixel(x,Round (y));
        y += m;
    \}
\}
```

- This is called Differential Digital Analyzer (DDA)
- Problem: Floating-point add and rounds are expensive

Bresenham's Algorithm

This does the right thing (same as DDA) at a cost of only 2 or 3 integer adds per point. (assumes sorted endpoints, $0<$ slope <1)

```
void draw_line(int x0, int y0, int x1, int y1) {
    int x, y = y0;
    int dx = 2* (x1-x0), dy = 2* (y1-y0);
    int dydx = dy-dx, F = dy-dx/2;
    for (x=x0 ; x<=x1 ; x++) {
        draw_pixel(x, y);
        if (F<0) F += dy;
        else {y++; F += dydx;}
    }
}
```

why does this work?

Implicit Function for a Line

Line \mathbf{L} from $\left[x_{0}, y_{0}\right]$ to $\left[x_{1}, y_{1}\right]$.

$$
\begin{aligned}
& \mathbf{P}_{0}=\left[x_{0}, y_{0}\right] \\
& \mathbf{P}_{1}=\left[x_{1}, y_{1}\right] . \\
& d x=x_{1}-x_{0}, d y=y_{1}-y_{0} \\
& \mathbf{N}=[d y,-d x]
\end{aligned}
$$

$$
\text { implicit function : } F(\mathbf{P})=2 \mathbf{N} \cdot\left(\mathbf{P}-\mathbf{P}_{0}\right)
$$

$$
F=0 \rightarrow \mathbf{P} \text { is on } \mathbf{L}
$$

Why the factor of 2? Because we're going to divide by 2 later.

Line Drawing: Which Pixel is Next?

- Assume:

- 0 < slope < 1
- sorted endpoints, $x_{0}<x_{1}$
- At each step:
- Current point is (x, y)
- Next point is pixel ($x+1$, ?) that's closest to the actual line
- Do we increment x and y or only x ?
- Use the implicit function to decide!

Use the Implicit Function

- Idea: Test the half-way point ($\mathrm{x}+1, \mathrm{y}+1 / 2$)

Trick: Incrementally Update F

$$
\begin{aligned}
\mathbf{P} & =(x, y), \Delta=(1,1 / 2) \\
F(\mathbf{P}) & =\mathbf{N} \cdot\left(\mathbf{P}-\mathbf{P}_{0}\right) \\
F(\mathbf{P}+\Delta) & =\mathbf{N} \cdot\left(\mathbf{P}+\Delta-\mathbf{P}_{0}\right) \\
& =F(\mathbf{P})+\mathbf{N} \cdot \Delta
\end{aligned}
$$

- What we care about here is only the sign of \mathbf{F}, so multiply the function by 2 to avoid floating point calculation

Trick: Incrementally Update F

$$
\begin{aligned}
F(\mathbf{P}) & =2 \mathbf{N} \cdot\left(\mathbf{P}-\mathbf{P}_{0}\right) \\
F(\mathbf{P}+\Delta) & =2 \mathbf{N} \cdot\left(\mathbf{P}+\Delta-\mathbf{P}_{0}\right) \\
& =F(\mathbf{P})+2 \mathbf{N} \cdot \Delta
\end{aligned}
$$

- Computing $F(P)$ requires a dot product:
-2 multiplications and 1 add
- But computing $F(P+\Delta)$ requires only 1 add
-The $2 N \bullet \Delta$ term is constant - it only needs to be calculated once
- Δ is $[1,0]$ or $[1,1]$

Decision Variable F

$$
\begin{aligned}
F_{0} & =F\left(\mathbf{P}_{0}+[1,1 / 2]\right) \\
& =F\left(\mathbf{P}_{0}\right)+\mathbf{N} \times[2,1] \\
\mathbf{N} & =[d y,-d x] \\
F & =F+2 \mathbf{N} \times \Delta \\
& \text { where } \\
\Delta & =[1,0] \text { or }[1,1] \\
& \text { i.e., }
\end{aligned}
$$

$F=F\left(P_{0}\right)+2 d y-d x$
If $F<0 \quad F=F+2 d y$

$$
\text { If } F>=0 F=F+2 d y-2 d x
$$

- Initialize x, y, F
- Loop until end of line:
- draw pixel (x, y)
-increment x
- if F>0, increment y
-increment F according to whether Δ is $[1,0]$ or $[1,1]$

Bresenham Line Algorithm

This does the right thing (same as DDA) at a cost of only 2 or 3 integer adds per point. (assumes sorted endpoints, $0<$ slope <1)

```
void draw_line(int x0, int y0, int x1, int y1) {
```

 int \(x, y=y 0\);
 int \(d x=2 *(x 1-x 0), d y=2 *(y 1-y 0)\);
 int \(d y d x=d y-d x, F=d y-d x / 2\);
 for (\(x=x 0\); \(x<=x 1\); \(x++\)) \{
 draw_pixel(x, y);
 if (\(\mathrm{F}<0\)) \(\mathrm{F}+=\mathrm{dy}\);
 else \{y++; F += dydx; \}
 \}
 \}

Line Drawing, Cases by Octant

- The algorithms for drawing lines need to step along one pixel at a time in the "fast" direction, which depends on the slope of the line
- We also have to worry about reversed end point order (drawing from large to small X, for example).
- This gives us 8 cases.

x

We'll assume slope is

Bresenham Algorithm for Circles

- Same approach as line algorithm
- use a decision variable formula derived for a circle ($F=x^{2}+$ $y^{2}-r^{2}$)
- Eightfold symmetry
- only compute the points for one octant - use sign flips to give the rest
- Extends to general conics (ellipses...)

Bresenham Circle Algorithm

This draws a circle by calculating in one octant and re-using the resulting point 8 times

```
void draw_circle(int radius) {
    int x = 0, y = radius;
    int d = 1-radius;
    while (y>x) {
        if (d<0) /* select East point next */
        d += 2*x + 3;
```

 else \{ /* select South-East point next */
 d += 2* (x-y) + 5;
 \(\mathrm{y}^{--}\);
 \}
 \(x++;\)
 draw_8_pts (x,y) ; /* draws point in each octant */
 \}

Scan Converting Filled, Convex Polygons

- Find top and bottom vertices
- Make list of edges along left and right sides
- For each scanline from top to bottom
- There's a single span to fill
- Find left \& right endpoints of span, xl \& xr, (can use Bresenham's algorithm
- Fill pixels inbetween xl \& xr
- If you don't do all of the above carefully, cracks or overlaps between abutting polygons result!

Scan Converting Filled, Concave Polygons

- For each scanline
- Or, triangulation
- Find all the scanline/polygon intersections
- Sort them left to right
- Fill the interior spans between intersections
- Parity Rule: odd ones are interior, even are exterior

Color Interpolations

Review on Interpolation

- Linear Interpolation

$$
\begin{aligned}
? & =\mathrm{a}(1-t)+\mathrm{b} t \\
& =\mathrm{a}+(\mathrm{b}-\mathrm{a}) t
\end{aligned}
$$

- Bilinear Interpolation

$$
\begin{aligned}
? & =\mathrm{a}(1-d x)+\mathrm{b} d x \\
? & =\mathrm{c}(1-d x)+\mathrm{d} d x \\
?= & ?(1-d y)+? d y=?+(?-?) d y \\
& =\mathrm{a}(1-d x)(1-d y)+\mathrm{b} d x(1-d y) \\
& +\mathrm{c}(1-d x) d y+\mathrm{d} d x d y
\end{aligned}
$$

Again, How to Draw This?

Aliasing

Samples don't capture geometry changes - Not dense enough!

Antialiasing: Super-sampling

Back to screen resolution

Antialiasing: Unweighted Area Sampling

- Line with 'thickness'
- Pixel's color, here 'blackness', depends on the intersection area between the thick line and the pixel square

Antialiasing: Unweighted Area Sampling

Properties:

1. Intenstity soley based on intersection area
2. Equal areas equal intensity ?

However, the same area closer to the pixel center should have greater influence than does one at a greater distance! This consideration leads to

Weighted Area Sampling:

'blackness’ = area*f(distance),
Where f: weighting function, dist: pixel center distance to the line

Antialiasing: Weighted Area Sampling

We can define many weighting functions!

Can be anything, BUT,

1. Finite non-zero region
2. Meaningful (e.g., decreasing from high to zero value when distance increases
3. Full 'area’ equal to 1

Gaussian

Cone

Extend Everything to 3D

Voxelization

More Issues

The devils in the details:

1. Non-integer endpoints (occurs frequently when rendering 3D lines)
2. What if a line endpoint lies outside the viewing area?
3. How do you handle thick lines?
4. Optimizations for connected line segments
5. Lines show up in the strangest places
6.
