Scan Conversion

e Drawing Lines
e Drawing Circles

Baoquan Chen 2018 1

How to Draw This?

il

aaaaaaaaaaaaaaa

Start From Simple

How to draw a line: y(x) =mx + b ?

Baoquan Chen 2018 3

Scan Conversion, a.k.a.
Rasterization

Ideal Picture

=)

Raster Representation

Scan Conversion: Process of converting shapes to raster

Baoquan Chen 2018

Scan Conversion Algorithms

e A set of pixels can only a continuous geometric
object

e This means that scan conversion usually introduces error
* Properties of good scan conversion algorithms:

— Accuracy
— Efficiency
e Challenges
— Modify all the right pixels
— Modify only the right pixels
— Calculate their values correctly
— Do it quickly
e So, start with a correct algorithm and optimize it

Baoquan Chen 2018 5

A Really Simple Line Algorithm

e Equation for a line: y(x) = mx + b (0<=x <1)

e Step along one pixel at a time in the “fast” direction, here x
direction, fill in one pixel per column

e So, just evaluate for each x

void line (int x0, int y0, int x1, int y1) {
float m = whatever;
float b = whatever;
int x;
for (x=x0;x<=x1;x++) {
float y= m*x + Db;
draw pixel (x,Round(y));
}

}
e Certainly correct, but slow:

— integer add, cast to float, floating multiply and add, plus
round every step.

Baoquan Chen 2018 6

Lines: DDA Algorithm

e Optimize the previous to remove multiply from inner loop.
e |f we know y(x), we can calculate y(x+1):

y(x+1) =mx+m+b =y(x) +m

void line (int x0, int y0, int x1, int y1) {
float yv = vy0;
float m = (yl1 - vy0)/ (float) (x1 - x0);
int x;
for (x=x0; x<=x1;x++) {
draw pixel (x,Round(y)) ;
y t= m;

}

e This is called Differential Digital Analyzer (DDA)

e Problem: Floating-point add and rounds are expensive

Baoquan Chen 2018 7

Bresenham’s Algorithm

This does the right thing (same as DDA) at

a cost of only 2 or 3 integer adds per point.

(assumes sorted endpoints, O<slope<1)

void draw line(int x0, int y0, int x1, int yl) {
int x, yv = y0;

int dx = 2*(x1-x0), dy = 2*(yl-y0);
int dydx = dy-dx, F = dy-dx/2;

for (x=x0 ; x<=x1 ; x++) {
draw pixel(x, y);
if (F<0) F += dy;
else {y++; F += dydx;}

}

why does this work?

Baoquan Chen 2018 8

Implicit Function for a Line

Line L from [X,,Y,]t0 [X;,V;].

Po :[meo]’

P, = [X11Y1]-

dX =X, = X,, dy=Y, =Y,

N = [dy, —dx]

implicit function : F(P) =2N-(P -F,)
F=0—>PisonL

F<Q
F & F 0 Why the factor of 2?
p 1 Because we’re going
0 to divide by 2 later.
N

Baoquan Chen 2018 9

Line Drawing: Which Pixel is Next?

e Assume:
—0<slope<1
— sorted endpoints, x,<x,
e At each step:
— Current point s (x,y)
— Next point is pixel (x+1,?)

that’s closest to the
actual line

— Do we increment x and y
' ' : or only x?

(x’y) (X T ,)/) e Use the implicit function to

decide!

Go here next?

Baoquan Chen 2018 10

Use the Implicit Function
e I[dea: Test the half-way point (x+1, y+1/2)

F(x +1Ly+1/2))>07?
yes: iIncrement X and y
no: Increment X

Baoquan Chen 2018 11

Trick: Incrementally Update F

P=(x,y),A=(11/2)
F(P)=N-(P-P,)
F(P+A)=N-(P+A-P,)
=F(P)+N-A

e What we care about here is only the sign of F, so

multiply the function by 2 to avoid floating point
calculation

Baoquan Chen 2018 12

Trick: Incrementally Update F

F(P)=2N-(P-P,)
FIP+A)=2N-(P+A-P,)
= F(P)+2N-A
e Computing F(P) requires a dot product:

—2 multiplications and 1 add
e But computing F(P+A) requires only 1 add

—The 2Ne A term is constant - it only needs to be
calculated once

e Ais[1,0] or [1,1]

Baoquan Chen 2018 13

Decision Variable F
F =F(P +[11/2])

_ F(PO)-I- N ><[2’1] e Initialize XY, F
e Loop until end of line:

N =[dy, —dXx] .
—draw pixel (x,y)
F =F+2N XA —increment x
where —if F>0, increment y
A =[10] or [1,1] —increment F according to
ie.. whether Ais [1,0] or [1,1]

F :F(PO)+2dy—d>f/
If F<O0 F=F +2dy

o (x+lLy+]))
or / : ®
If F>=0 F = F+2 dy — 2dx o

(xy) (x+Ly)

Baoquan Chen 2018 14

Bresenham Line Algorithm

This does the right thing (same as DDA) at
a cost of only 2 or 3 integer adds per point.
(assumes sorted endpoints, 0<slope<lI)

void draw line(int x0, int y0, int x1, int yl) ({
int x, y = yO0O;
int dx = 2*(x1-x0), dy = 2*(yl-vy0);
int dydx = dy-dx, F = dy-dx/2;

for (x=x0 ; x<=x1 ; x++) {
draw pixel (x, y);
if (F<0) F += dy;
else {yt++; F += dydx;}

}

Baoquan Chen 2018 15

Line Drawing, Cases by Octant

e The algorithms for drawing lines need to step along one
pixel at a time in the “fast” direction, which depends on
the slope of the line

e We also have to worry about reversed end point order

(drawing from large to small X, for example).
e This gives us 8 cases.

Baoquan Chen 2018

yu

16

We’ll assume slope is
between 0 and 1

a
vV

Bresenham Algorithm for Circles

e Same approach as line algorithm

— use a decision variable formula derived for a circle (F = x* +

y*-r?)
e Eightfold symmetry

— only compute the points for one octant - use sign flips to
give the rest

e Extends

to general conics (ellipses...)

O

O

Baoquan Chen 2018

17

-
N

N
_/

Bresenham Circle Algorithm

This draws a circle by calculating in one octant
and re-using the resulting point 8 times

void draw _circle(int radius) ({

int x = 0, y = radius;
int d = l-radius;
while (y>x) {
if (d<0) /=* select East point next */
d += 2*x + 3;

else { /* select South-East point next */
d += 2% (x-y) + 5;
y=—;

}

X++;

draw 8 pts(x,y); /* draws point in each octant */
}

Baoquan Chen 2018 18

Scan Converting Filled, Convex Polygons

® Find top and bottom vertices
® Make list of edges along left and right sides
® For each scanline from top to bottom

— There’s a single span to fill

— Find left & right-endpoints of span, x| & xr, (can use Bresenham’s
algorithm

— Fill pixels inbetween x| & xr

® |f you don’t do all of the above carefully, cracks or overlaps between
abutting polygons result!

Baoquan Chen 2018 19

Scan Converting Filled, Concave Polygons

e For each scanline e Or, triangulation
— Find all the scanline/polygon intersections
— Sort them left to right
— Fill the interior spans between intersections

— Parity Rule: odd ones are interior, even are
exterior

Baoquan Chen 2018 20

10NS

o
N)

B L

Color Interpolat

Lﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ
3
a

A

e e

o (20,r0,00,b0

et et bttt e a a a a a a a d a de_ae_ae_a_

21

Baoquan Chen 2018

Review on Interpolation

e Linear Interpolation

a 7 b ? = a(L-t)+hbt
R =a+ (b-a)t
t 1t

e Bilinear Interpolation

? ? = a(1-dx)+bdx
a ’}dy o = o(1-dx)+ddx
a7 ? = 2(1-dy)+7dy = ? + (?-?)dy
c. . d = a(1-dx)(1-dy)+bdx(1-dy)

+c(1-dx)dy+ddxdy

Baoquan Chen 2018 22

Again, How to Draw This?

§\\\\\\“////”///////

Z
Z

-

aaaaaaaaaaaaaaa

Aliasing

Samples don’t capture geometry changes
- Not dense enough!

Baoquan Chen 2018 24

Antialiasing: Super-sampling

screen Increasing Back to screen
resolution resolution resolution

Baoquan Chen 2018 25

Antialiasing: Unweighted Area Sampling

A
/ /

——
- =
T
——
"
]

e Line with ‘thickness’

e Pixel’s color, here ‘blackness’, depends on the intersection area
between the thick line and the pixel square

Baoquan Chen 2018 26

Antialiasing: Unweighted Area Sampling

A

Properties:

1. Intenstity soley based on
intersection area

2. Equal areas equal intensity ?

[
»

However, the same area closer to the pixel center should have greater
influence than does one at a greater distance! This consideration leads

to

Weighted Area Sampling:

‘blackness’ = area*f(distance),

Where f: weighting function, dist: pixel center distance to the line
Baoquan Chen 2018 27

Antialiasing: Weighted Area Sampling

We can define many weighting functions!

Can be anything, BUT,
1. Finite non-zero region

2. Meaningful (e.g., decreasing from high to zero value
when distance increases

3. Full ‘area’ equal to 1

A A

/TN

Box Tent/Bartlet

v

v

™
S

v

Gaussian Cone

Baoquan Chen 2018 28

Extend Everything to 3D

Voxelization

Baoquan Chen 2018 29

More Issues

The devils in the detalls:

1.

Non-integer endpoints
(occurs frequently when rendering 3D lines)

What If a line endpoint lies outside the
viewing area?

How do you handle thick lines?
Optimizations for connected line segments
Lines show up in the strangest places

Baoquan Chen 2018 30

