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What’s An Image?

Image:  distribution of light energy on 2D “film”: E(x,y,,t)
(x,y) - position

 - wavelength (blue, green, yellow, red, violet)

t – time

This is a continuous representation
– Not easily represented on a computer
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How Do We Represent Images?

Vector Representation

+  arbitrary resolution
+  good for line drawings (text)

- may draw same point twice
- hard to do color changes

Raster Representation

+  good for color images
+  general purpose

- bounded resolution (aliasing)
- store EVERY pixel
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Raster scan

• Raster displays (TV’s, LCD’s)

– electron beam traces out a regular pattern:  raster scan

– other raster technologies:  LCD, plasma, micro-mirror

– image is a raster:  a 2D array of pixels

Vector and Raster

Vector scan

• Early displays were vector displays

– electron beam traces out line segments

– image is a sequence of endpoints
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Displays and Framebuffers

• The picture drawn by a raster display is stored in memory as 
a 2-D array of pixels.

• The value stored in each pixel controls the brightness of the 
beam (or beams, for color displays) as it sweeps past the 
corresponding screen location.

• The memory that stores the 2-D array of pixel values is 
called a framebuffer.

• The video hardware scans the framebuffer at  ~60Hz
– changes appear immediately

• Displays support different types of pixels
– B&W displays: 1 bit/pixel (bitmap).

– Basic color displays: 8, 16, or 24 bits.

– High-end displays: 96 or more bits. 
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Full-color (RGB) displays

• For 24 bit color:

• store 8 bits each of red, green, and 
blue per pixel.

• E.g. (255,0,0) is pure red, and (255, 
255, 255) is white.

• Yields 2^24 = 16 million colors.

• For 15 bit color:

• 5 bits red + 5 green + 5 blue

• The video hardware uses the values to 
drive the R, G, and B guns.

• You can mix different levels of R, G, and 
B to get (almost) any color you want

255 0 0
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Colormaps (LUT’s)

• A single number (e.g. 8 bits) stored at each pixel.

• Used as an index into an array of RGB triples.

• With 8 bits per pixel, you get 256 colors of your choice

• Simple things to fill up color-maps with:
– A gray ramp (for grayscale pictures)

– A bunch of pre-chosen colors

– A set of colors adaptively chosen for a given picture 
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Some Picture File Formats

JPEG: Joint Photographic Experts Group Format

TIFF: Tagged-Image File Format

GIF: CompuServe Graphics Interchange Format

PPM: Portable PixMap Format (ASCII or binary)

EPS: Encapsulated PostScript Format (ASCII)
BITS PER PIXEL FILE SIZE COMMENTS

JPEG 24 small lossy compression

TIFF 8,24 medium good general purpose

GIF 1,4,8 medium popular, but 8-bit

PPM 24 big easy to read/write

EPS 1,2,4,8,24 huge good for printing

Others:  BMP, XPM, RAS, PICT, PNG, etc...
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Deeper Framebuffers

• Some frame buffers have 96 or more bits per pixel.  What are they all 
for?  We start with 24 bits for RGB.

• Alpha channel: an extra 8 bits per pixel, to represent “transparency.”  
Used for digital compositing.  That’s 32 bits.
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Image Compositing

• Represent an image as layers that are composited (matted) together

• To support this, use pixel’s extra alpha channel in addition to R, G, B

• Alpha is opacity: 0 if totally transparent, 1 if totally opaque

• Alpha is often stored as an 8 bit quantity; usually not displayed.

• Mathematically, to composite a2 over a1 according to matte 

b = (1-)•a1+ •a2

 = 0 or 1 -- a hard matte,  = between 0 and 1 -- a soft matte

• Compositing is useful for photo retouching and special effects.

• Compositing is useful for translucent polygon rendering and volume 
rendering!
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Deeper Framebuffers

• Some frame buffers have 96 or more bits per pixel.  What are they all 
for?  We start with 24 bits for RGB.

• Double buffering:

– For clean-looking flicker-free real time animation.

– Two full frame buffers (including alpha and z).

– Only one at a time is visible—you can toggle instantly.

– Draw into the “back buffer” (invisible), then swap.

– Can be faked with off-screen bitmaps (slower.)

– 2 x 48 = 96.

• Alpha channel: an extra 8 bits per pixel, to represent “transparency.”  
Used for digital compositing.  That’s 32 bits.

• A Z-buffer, used to hold a  “depth” value for each pixel.  Used for 
hidden surface 3-D drawing. 16 bits/pixel of “z” brings the total to 48 
bits.
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Image Processing

• Point Processing: modify each pixel as a function of 
its pixel value

• Filtering: output is a function of the (usually) local 
neighborhood around the pixel

• Image processing is a discrete version of signal 
processing (some lingo: image is a two-dimensional 
“signal”)

• Other topics:

– Image transformation (resize, warp)

– Image compression

– Texture mapping

– …
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Point Processing

• Input: a[x,y], Output b[x,y] = f(a[x,y])

• f transforms each pixel value separately

• Useful for contrast adjustment

Suppose our picture is grayscale (a.k.a. monochrome).

Let v denote pixel value, suppose it’s in the range [0,1].

f(v) = v identity; no change

f(v) = 1-v negate an image
(black to white, white to black)

f(v) = vp, p<1 brighten

f(v) = vp, p>1 darken

v

f(v)
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Image Filtering:  Blurring

original, 64x64 pixels 3x3 blur 5x5 blur
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Image Filtering:  Edge Detection

horizontal derivative vertical derivative
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Image Filters

• In 1-D such a simple filter can be written:

• This is convolution, written b = ah for short. Convolution is 
commutative, i.e. ah=ha

• 2-D is similar, but with a double-summation:

• This class of filters is called “linear, shift-invariant”


+

−=

−=
t

txhtaxb ][][][

where a[x] = input signal

b[x] = output signal

h[x] = filter

x takes on only integer values

b[x, y] = a[u, v]h[x − u, y − v]
v=−

+


u =−

+


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Image Filter Example

a[x,y] = input signal

b[x,y] = output signal

h[x,y] = 3x3 filter

x,y take on only integer vals
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Blurring Filters

A simple blurring effect can be achieved with a 3x3 filter centered around a pixel,

written explicitly: or as coefficient matrix:

b[x,y] = (a[x-1,y-1] + a[x,y-1] + a[x+1,y-1]

+a[x-1,y] + a[x,y] + a[x+1,y]

+a[x-1,y+1] + a[x,y+1] + a[x+1,y+1])  / 9

More blurring is achieved with a wider nn filter:



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Edge Filter

To find edges, use approximation to the magnitude of the gradient of the image.

Gradient and its magnitude:

Sobel edge filter uses these weights:

This is a nonlinear filter because of the sqrt and square operations.

a =
a
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Image Display and Print 

• Basic idea:  give up spatial resolution in return for greater brightness or 
color resolution

• The eye does spatial averaging, so present a pattern whose average
color matches the color you want 

• In the patterns below, each square is either black or white.  

– From far away, the eye sees the average brightness of each grid, not 
the individual squares.

– The average brightness of each 3x3 grid depends on the number of 
black and white squares—you can get ten distinct brightness levels 
ranging from black to white.

– To draw a grayscale picture, each input pixel is represented by an 
ouput pattern.  The pattern of dots that gets drawn depends on the 
input pixel value.

• How to draw grayscale on a 1-bit screen, or full color on an 8-bit screen

0 1 2 3 4 5 6 7 8 9
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Halftone Screens

• How do we select a good set of patterns

• Pick patterns that avoid annoying artifacts:

– Constant-brightness regions should not have obvious stripes.

– On many devices (e.g. laser printers) isolated pixels should be avoided.

– Growth-sequence: pixels that are “on” at one brightness levels should 
remain on for all higher levels.  This avoids contouring artifacts.

• The full set of dot patterns can be encoded in a single n x n dither matrix.  
Each element in the matrix is a threshold: the dot is turned on for input 
values greater than  the threshold.  A sample 3x3 dither matrix is

6 8 4

1 0 3

5 2 7

??????????
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Floyd-Steinberg Error Diffusion

If image and display have the same resolution:
• The values of the input image's pixels are normalized in floating point 

format to [0,1] with 0 (black) and 1 (white).

• Scan in raster order.

• At each pixel, draw the least-error output value (round off.)

• Divide the error into 4 (uneven) chunks.

• Add the error chunks back into the input values, at the 4 neighboring 
pixels you haven’t hit yet:

• Can alternate scan direction

7/16

3/16 5/16 1/16



23Baoquan Chen 2018

Original image After Floyd-Steinberg dithering

Floyd-Steinberg Error Diffusion
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Color Dithering

• You can mix Red, Green, and Blue to get any color you like.

• If you have an RGB image and a 3bit display, 1 per color, you just 
dither R, G, and B separately.

• On an 8 bit display, you can use the color map to divide the 8 bits into 
three parts (3, 3, 2) for R, G, and B.  (Blue gets shortchanged because 
we can’t see blue very well.)  So you get 8 levels each for R and G, 
and 4 for B.

• Dither R, G, and B separately (Floyd-Steinberg works fine for multi-bit 
output,) assemble the results into an 8-bit byte, and write to the 
frame buffer.

• The results generally look excellent, particularly on a high-res 
monitor.

http://www.iro.umontreal.ca/~ostrom/publications/research.html#halftoning

More on dithering:

http://www.iro.umontreal.ca/~ostrom/publications/research.html#halftoning

