Image Representation
and Processing

What’'s An Image?

Image: distribution of light energy on 2D “film”: E(x,y,A,t)
(x,y) - position
A - wavelength (blue, green, yellow, red, violet)
t—time
This is a continuous representation
— Not easily represented on a computer

Baoquan Chen 2018 2

How Do We Represent Images??

V

Vector Representation

+ arbitrary resolution
+ good for line drawings (text)

- may draw same point twice
- hard to do color changes

Baoquan Chen 2018

Raster Representation

+ good for color images
+ general purpose

- bounded resolution (aliasing)
- store EVERY pixel

e Early displays were vector displays

Vector and Raster

— electron beam traces out line segments

—image is a sequence of endpoints

e Raster displays (TV’s, LCD’s)

—electron beam traces out a regular pattern: raster scan

—other raster technologies: LCD, plasma, micro-mirror

—image is a raster: a 2D array of pixels

—
— iy
—

Vector scan

Raster scan

Baoquan Chen 2018

Displays and Framebuffers

e The picture drawn by a raster display is stored in memory as
a 2-D array of pixels.

e The value stored in each pixel controls the brightness of the
beam (or beams, for color displays) as it sweeps past the
corresponding screen location.

e The memory that stores the 2-D array of pixel values is
called a framebuffer.

e The video hardware scans the framebuffer at ~60Hz
— changes appear immediately
e Displays support different types of pixels
— B&W displays: 1 bit/pixel (bitmap).
— Basic color displays: 8, 16, or 24 bits.
— High-end displays: 96 or more bits.

Baoquan Chen 2018 5

255

Baoquan Chen 2018

Full-color (RGB) displays

e For 24 bit color:

» store 8 bits each of red, green, and
blue per pixel.

* E.g. (255,0,0) is pure red, and (255,
255, 255) Is white.

* Yields 224 = 16 million colors.
e For 15 bit color:
5 bits red + 5 green + 5 blue

 The video hardware uses the values to
drive the R, G, and B guns.

 You can mix different levels of R, G, and
B to get (almost) any color you want

Colormaps (LUT’s)

i 0 R B
- 1|r | |B
2 255 0

255 R B

e A single number (e.g. 8 bits) stored at each pixel.
e Used as an index into an array of RGB triples.
e With 8 bits per pixel, you get 256 colors of your choice
e Simple things to fill up color-maps with:
— A gray ramp (for grayscale pictures)

— A bunch of pre-chosen colors
— A set of colors adaptively chosen for a given picture

Baoquan Chen 2018 7

Some Picture File Formats

JPEG: Joint Photographic Experts Group Format
TIFF: Tagged-Image File Format

GIF: CompuServe Graphics Interchange Format
PPM: Portable PixMap Format (ASCII or binary)
EPS: Encapsulated PostScript Format (ASCII)

BITS PER PIXEL FILE SIZE COMMENTS
JPEG 24 small lossy compression
TIFF 8,24 medium good general purpose
GIF 1,4,8 medium popular, but 8-bit
PPM 24 big easy to read/write
EPS 1,2,4,8,24 huge good for printing

Others: BMP, XPM, RAS, PICT, PNG, etc...

Baoquan Chen 2018 8

Deeper Framebuffers

e Some frame buffers have 96 or more bits per pixel. What are they all
for? We start with 24 bits for RGB.

e Alpha channel: an extra 8 bits per pixel, to represent “transparency.”
Used for digital compositing. That’s 32 bits.

Baoquan Chen 2018 9

Image Compositing

e Represent an image as layers that are composited (matted) together
e To support this, use pixel’s extra alpha channel in addition to R, G, B
e Alpha is opacity: O if totally transparent, 1 if totally opaque
e Alpha is often stored as an 8 bit quantity; usually not displayed.
* Mathematically, to composite a, over g, according to matte o

b =(1-a)ea,+ aea,

o =0 or 1 -- a hard matte, o = between 0 and 1 -- a soft matte
e Compositing is useful for photo retouching and special effects.

e Compositing is useful for translucent polygon rendering and volume
rendering!

Baoquan Chen 2018 10

Deeper Framebuffers

e Some frame buffers have 96 or more bits per pixel. What are they all
for? We start with 24 bits for RGB.

e Alpha channel: an extra 8 bits per pixel, to represent “transparency.”
Used for digital compositing. That’s 32 bits.

e A Z-buffer, used to hold a “depth” value for each pixel. Used for

hidden surface 3-D drawing. 16 bits/pixel of “z” brings the total to 48
bits.

e Double buffering:
— For clean-looking flicker-free real time animation.
— Two full frame buffers (including alpha and z).
— Only one at a time is visible—you can toggle instantly.
— Draw into the “back buffer” (invisible), then swap.

— Can be faked with off-screen bitmaps (slower.)
— 2x48 =96.

Baoquan Chen 2018 11

Image Processing

e Point Processing: modify each pixel as a function of
its pixel value

e Filtering: output is a function of the (usually) local
neighborhood around the pixel

* Image processing is a discrete version of signal
processing (some lingo: image is a two-dimensional
“signal”)

e Other topics:
—Image transformation (resize, warp)
—Image compression
—Texture mapping

Baoquan Chen 2018 12

Point Processing

e Input: a[x,y], Output b[x,y] = f(a[x,y])

e f transforms each pixel value separately

e Useful for contrast adjustment

Suppose our picture is grayscale (a.k.a. monochrome).
Let v denote pixel value, suppose it’s in the range [0,1].

f(v) =v identity; no change

f(v) = 1-v negate an image

(black to white, white to black)

f(v) =vP,p<1 Dbrighten

NERVZAN

f(v) =vP,p>1 darken

Baoquan Chen 2018 13

original, 64x64 pixels 3x3 blur 5x5 blur

Baoquan Chen 2018 14

Image Filtering: Edge Detection

S o oy

horizontal derivative vertical derivative

Baoquan Chen 2018 15

Image Filters

In 1-D such a simple filter can be written:

- where a[Xx]
b[x]= > a[t]h[x —t] b[]
t=—o0 h[X]

= input signal
= output signal
= filter

X takes on only integer values

e This is convolution, written b = a®h for short. Convolution is

commutative, i.e. a®h=h®a

b[x,y]= i i alu, vlh[x —u,y —v]

U =—00 V=—00

Baoquan Chen 2018 16

2-D is similar, but with a double-summation:

This class of filters is called “linear, shift-invariant”

Image Filter Example

a[x,y] = input signal
— b[x,y] = output signal
b[Xx,y]= afu, vln[x —u,y —v "~ _
[xy] UZ;VZ_:; [VIR y—v] h[x,y] = 3x3 filter
X,y take on only integer vals
0/0]0|0]| 0|25 25|25 25|25 0/0|0/0|25/25 0/0|0]|0
110-1 010100 0|25 25|25 25|25 0100012525 0/0{0|0
—210]-2 010100 0|25 25|25 25|25 0/0/0/0(2525 0/0{0|0
410-1 010100 0|25 25|25 25|25 0100012525 0/0{0|0
h 000002525|252525 0/0/0/0|2525 0,0{0|0
(0,0) at center ~ 010/0/0]0/2525252525 0]00/025/25/ 0|0/ 0|0
0/0/0|0| 0|25 25|25 25|25 0/0{0/0/2525 0/0/0/0
010,00 02525 25| 25|25 0/0{0/0/2525 0/Q9/0/0
010,00 02525 25 25|25 0/0/0/0(2525 0/0{0|0
010,00 0|25 25 25|25|25 0100012525 0/0{0|0

a b

Baoquan Chen 2018 17

Blurring Filters

A simple blurring effect can be achieved with a 3x3 filter centered around a pixel,
written explicitly: or as coefficient matrix:

b[x,y] = (a[x-1,y-1] + a[x,y-1] + a[x+1,y-1]
+a[x-1,y] + a[x,y] + a[x+1,y]
+a[x-1,y+1] + a[x,y+1] + a[x+1,y+1]) /9

O |~
T o
T T
T R

More blurring is achieved with a wider nxn filter:

1...1

>
*
>

Baoquan Chen 2018 18

Edge Filter

To find edges, use approximation to the magnitude of the gradient of the image.
Gradient and its magnitude:

2 2
va- & 2 , |val= a [2
K N 28 ¥

Sobel edge filter uses these weights:

p -1 0 1 p 1 2 1
—= 2 0 2, —= 0 0 O

X
-1 0 1 Y -1 2 -

This is a nonlinear filter because of the sqrt and square operations.

Baoquan Chen 2018 19

Image Display and Print

e How to draw grayscale on a 1-bit screen, or full color on an 8-bit screen

e Basic idea: give up spatial resolution in return for greater brightness or
color resolution

e The eye does spatial averaging, so present a pattern whose average
color matches the color you want

e In the patterns below, each square is either black or white.

— From far away, the eye sees the average brightness of each grid, not
the individual squares.

— The average brightness of each 3x3 grid depends on the number of
black and white squares—you can get ten distinct brightness levels
ranging from black to white.

— To draw a grayscale picture, each input pixel is represented by an
ouput pattern. The pattern of dots that gets drawn depends on the
input pixel value.

y - . \ B
[
NN Al
L 4N 4 v 4
NN Al Al
no4n 4 4N 4

0 1 2 3 4 3}

Baoquan Chen 2018 20

Halftone Screens

e How do we select a good set of patterns

* Pick patterns that avoid annoying artifacts:
— Constant-brightness regions should not have obvious stripes.
— On many devices (e.g. laser printers) isolated pixels should be avoided.

— Growth-sequence: pixels that are “on” at one brightness levels should
remain on for all higher levels. This avoids contouring artifacts.

e The full set of dot patterns can be encoded in a single n x n dither matrix.
Each element in the matrix is a threshold: the dot is turned on for input
values greater than the threshold. A sample 3x3 dither matrix is

6 8 4
1 0 3
5 2 7

Baoquan Chen 2018 21

Floyd-Steinberg Error Diffusion

If image and display have the same resolution:

The values of the input image's pixels are normalized in floating point
format to [0,1] with 0 (black) and 1 (white).

Scan in raster order.
At each pixel, draw the least-error output value (round off.)
Divide the error into 4 (uneven) chunks.

Add the error chunks back into the input values, at the 4 neighboring
pixels you haven’t hit yet:

Can alternate scan direction

3/16 |5/16 | 1/16

Baoquan Chen 2018 22

Floyd-Steinberg Error Diffusion

Original image After Floyd-Steinberg dithering

Baoquan Chen 2018 23

Color Dithering

e You can mix Red, Green, and Blue to get any color you like.

e If you have an RGB image and a 3bit display, 1 per color, you just
dither R, G, and B separately.

e On an 8 bit display, you can use the color map to divide the 8 bits into
three parts (3, 3, 2) for R, G, and B. (Blue gets shortchanged because
we can’t see blue very well.) So you get 8 levels each for R and G,
and 4 for B.

e Dither R, G, and B separately (Floyd-Steinberg works fine for multi-bit
output,) assemble the results into an 8-bit byte, and write to the
frame buffer.

e The results generally look excellent, particularly on a high-res
monitor.

More on dithering:

http://www.iro.umontreal.ca/~ostrom/publications/research.html#halftoning

Baoquan Chen 2018 24

http://www.iro.umontreal.ca/~ostrom/publications/research.html#halftoning

