
Image Representation
and Processing

2Baoquan Chen 2018

What’s An Image?

Image: distribution of light energy on 2D “film”: E(x,y,,t)
(x,y) - position

 - wavelength (blue, green, yellow, red, violet)

t – time

This is a continuous representation
– Not easily represented on a computer

3Baoquan Chen 2018

How Do We Represent Images?

Vector Representation

+ arbitrary resolution
+ good for line drawings (text)

- may draw same point twice
- hard to do color changes

Raster Representation

+ good for color images
+ general purpose

- bounded resolution (aliasing)
- store EVERY pixel

4Baoquan Chen 2018

Raster scan

• Raster displays (TV’s, LCD’s)

– electron beam traces out a regular pattern: raster scan

– other raster technologies: LCD, plasma, micro-mirror

– image is a raster: a 2D array of pixels

Vector and Raster

Vector scan

• Early displays were vector displays

– electron beam traces out line segments

– image is a sequence of endpoints

5Baoquan Chen 2018

Displays and Framebuffers

• The picture drawn by a raster display is stored in memory as
a 2-D array of pixels.

• The value stored in each pixel controls the brightness of the
beam (or beams, for color displays) as it sweeps past the
corresponding screen location.

• The memory that stores the 2-D array of pixel values is
called a framebuffer.

• The video hardware scans the framebuffer at ~60Hz
– changes appear immediately

• Displays support different types of pixels
– B&W displays: 1 bit/pixel (bitmap).

– Basic color displays: 8, 16, or 24 bits.

– High-end displays: 96 or more bits.

6Baoquan Chen 2018

Full-color (RGB) displays

• For 24 bit color:

• store 8 bits each of red, green, and
blue per pixel.

• E.g. (255,0,0) is pure red, and (255,
255, 255) is white.

• Yields 2^24 = 16 million colors.

• For 15 bit color:

• 5 bits red + 5 green + 5 blue

• The video hardware uses the values to
drive the R, G, and B guns.

• You can mix different levels of R, G, and
B to get (almost) any color you want

255 0 0

7Baoquan Chen 2018

Colormaps (LUT’s)

• A single number (e.g. 8 bits) stored at each pixel.

• Used as an index into an array of RGB triples.

• With 8 bits per pixel, you get 256 colors of your choice

• Simple things to fill up color-maps with:
– A gray ramp (for grayscale pictures)

– A bunch of pre-chosen colors

– A set of colors adaptively chosen for a given picture

i

R G B

0

1

2

255

R G B

R G B

255 0 0

8Baoquan Chen 2018

Some Picture File Formats

JPEG: Joint Photographic Experts Group Format

TIFF: Tagged-Image File Format

GIF: CompuServe Graphics Interchange Format

PPM: Portable PixMap Format (ASCII or binary)

EPS: Encapsulated PostScript Format (ASCII)
BITS PER PIXEL FILE SIZE COMMENTS

JPEG 24 small lossy compression

TIFF 8,24 medium good general purpose

GIF 1,4,8 medium popular, but 8-bit

PPM 24 big easy to read/write

EPS 1,2,4,8,24 huge good for printing

Others: BMP, XPM, RAS, PICT, PNG, etc...

9Baoquan Chen 2018

Deeper Framebuffers

• Some frame buffers have 96 or more bits per pixel. What are they all
for? We start with 24 bits for RGB.

• Alpha channel: an extra 8 bits per pixel, to represent “transparency.”
Used for digital compositing. That’s 32 bits.

10Baoquan Chen 2018

Image Compositing

• Represent an image as layers that are composited (matted) together

• To support this, use pixel’s extra alpha channel in addition to R, G, B

• Alpha is opacity: 0 if totally transparent, 1 if totally opaque

• Alpha is often stored as an 8 bit quantity; usually not displayed.

• Mathematically, to composite a2 over a1 according to matte 

b = (1-)•a1+ •a2

 = 0 or 1 -- a hard matte,  = between 0 and 1 -- a soft matte

• Compositing is useful for photo retouching and special effects.

• Compositing is useful for translucent polygon rendering and volume
rendering!

11Baoquan Chen 2018

Deeper Framebuffers

• Some frame buffers have 96 or more bits per pixel. What are they all
for? We start with 24 bits for RGB.

• Double buffering:

– For clean-looking flicker-free real time animation.

– Two full frame buffers (including alpha and z).

– Only one at a time is visible—you can toggle instantly.

– Draw into the “back buffer” (invisible), then swap.

– Can be faked with off-screen bitmaps (slower.)

– 2 x 48 = 96.

• Alpha channel: an extra 8 bits per pixel, to represent “transparency.”
Used for digital compositing. That’s 32 bits.

• A Z-buffer, used to hold a “depth” value for each pixel. Used for
hidden surface 3-D drawing. 16 bits/pixel of “z” brings the total to 48
bits.

12Baoquan Chen 2018

Image Processing

• Point Processing: modify each pixel as a function of
its pixel value

• Filtering: output is a function of the (usually) local
neighborhood around the pixel

• Image processing is a discrete version of signal
processing (some lingo: image is a two-dimensional
“signal”)

• Other topics:

– Image transformation (resize, warp)

– Image compression

– Texture mapping

– …

13Baoquan Chen 2018

Point Processing

• Input: a[x,y], Output b[x,y] = f(a[x,y])

• f transforms each pixel value separately

• Useful for contrast adjustment

Suppose our picture is grayscale (a.k.a. monochrome).

Let v denote pixel value, suppose it’s in the range [0,1].

f(v) = v identity; no change

f(v) = 1-v negate an image
(black to white, white to black)

f(v) = vp, p<1 brighten

f(v) = vp, p>1 darken

v

f(v)

14Baoquan Chen 2018

Image Filtering: Blurring

original, 64x64 pixels 3x3 blur 5x5 blur

15Baoquan Chen 2018

Image Filtering: Edge Detection

horizontal derivative vertical derivative

16Baoquan Chen 2018

Image Filters

• In 1-D such a simple filter can be written:

• This is convolution, written b = ah for short. Convolution is
commutative, i.e. ah=ha

• 2-D is similar, but with a double-summation:

• This class of filters is called “linear, shift-invariant”


+

−=

−=
t

txhtaxb][][][

where a[x] = input signal

b[x] = output signal

h[x] = filter

x takes on only integer values

b[x, y] = a[u, v]h[x − u, y − v]
v=−

+


u =−

+



17Baoquan Chen 2018

b

?

?

?

Image Filter Example

a[x,y] = input signal

b[x,y] = output signal

h[x,y] = 3x3 filter

x,y take on only integer vals

-1

-1

-2

0

0

0

1

1

2

h
(0,0) at center

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

a

4

1

25

25

25

25

25

25

25

25

25

25

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

25

25

25

25

25

25

25

25

25

25

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

b

0

b[x, y] = a[u, v]h[x − u, y − v]
v=−

+


u =−

+



18Baoquan Chen 2018

Blurring Filters

A simple blurring effect can be achieved with a 3x3 filter centered around a pixel,

written explicitly: or as coefficient matrix:

b[x,y] = (a[x-1,y-1] + a[x,y-1] + a[x+1,y-1]

+a[x-1,y] + a[x,y] + a[x+1,y]

+a[x-1,y+1] + a[x,y+1] + a[x+1,y+1]) / 9

More blurring is achieved with a wider nn filter:

















111

111

111

9

1

1

n * n

1 ... 1

1 ... 1

????????

19Baoquan Chen 2018

Edge Filter

To find edges, use approximation to the magnitude of the gradient of the image.

Gradient and its magnitude:

Sobel edge filter uses these weights:

This is a nonlinear filter because of the sqrt and square operations.

a =
a

x

a

y

??????
, a =

a

x

????
2

+
a

y

??????
2



x


−1 0 1

−2 0 2

−1 0 1

????????
,



y


1 2 1

0 0 0

−1 −2 −1

????????

20Baoquan Chen 2018

Image Display and Print

• Basic idea: give up spatial resolution in return for greater brightness or
color resolution

• The eye does spatial averaging, so present a pattern whose average
color matches the color you want

• In the patterns below, each square is either black or white.

– From far away, the eye sees the average brightness of each grid, not
the individual squares.

– The average brightness of each 3x3 grid depends on the number of
black and white squares—you can get ten distinct brightness levels
ranging from black to white.

– To draw a grayscale picture, each input pixel is represented by an
ouput pattern. The pattern of dots that gets drawn depends on the
input pixel value.

• How to draw grayscale on a 1-bit screen, or full color on an 8-bit screen

0 1 2 3 4 5 6 7 8 9

21Baoquan Chen 2018

Halftone Screens

• How do we select a good set of patterns

• Pick patterns that avoid annoying artifacts:

– Constant-brightness regions should not have obvious stripes.

– On many devices (e.g. laser printers) isolated pixels should be avoided.

– Growth-sequence: pixels that are “on” at one brightness levels should
remain on for all higher levels. This avoids contouring artifacts.

• The full set of dot patterns can be encoded in a single n x n dither matrix.
Each element in the matrix is a threshold: the dot is turned on for input
values greater than the threshold. A sample 3x3 dither matrix is

6 8 4

1 0 3

5 2 7

??????????

22Baoquan Chen 2018

Floyd-Steinberg Error Diffusion

If image and display have the same resolution:
• The values of the input image's pixels are normalized in floating point

format to [0,1] with 0 (black) and 1 (white).

• Scan in raster order.

• At each pixel, draw the least-error output value (round off.)

• Divide the error into 4 (uneven) chunks.

• Add the error chunks back into the input values, at the 4 neighboring
pixels you haven’t hit yet:

• Can alternate scan direction

7/16

3/16 5/16 1/16

23Baoquan Chen 2018

Original image After Floyd-Steinberg dithering

Floyd-Steinberg Error Diffusion

24Baoquan Chen 2018

Color Dithering

• You can mix Red, Green, and Blue to get any color you like.

• If you have an RGB image and a 3bit display, 1 per color, you just
dither R, G, and B separately.

• On an 8 bit display, you can use the color map to divide the 8 bits into
three parts (3, 3, 2) for R, G, and B. (Blue gets shortchanged because
we can’t see blue very well.) So you get 8 levels each for R and G,
and 4 for B.

• Dither R, G, and B separately (Floyd-Steinberg works fine for multi-bit
output,) assemble the results into an 8-bit byte, and write to the
frame buffer.

• The results generally look excellent, particularly on a high-res
monitor.

http://www.iro.umontreal.ca/~ostrom/publications/research.html#halftoning

More on dithering:

http://www.iro.umontreal.ca/~ostrom/publications/research.html#halftoning

