
Volume Visualization

Baoquan Chen

Peking University

MRI / CT / PET / Ultrasonography

Confocal Microscopy

Micro-Tomography

SimulationVoxelization

Volume Datasets

Virtual colonoscopy Radiation Therapy

Biomedical Visualization

Volumetric Application

Volumetric Application

Computational
Fluid Dynamics (CFD)

High-potential
iron proteins

Scientific Visualization

Amorphous Phenomena

Volumetric Application

Sculpting System
Volumetric Application

Volume Graphics

Volumetric objects
• have information inside it

• not consist of explicit surfaces and
edges

• May be too voluminous to be
represented geometrically

Volume Visualization Objective

• Peer inside voumetric objects

• Probe into voluminous & complex
structures

Volume Visualization

A visualization method concerned
with the representation,
manipulation, and rendering of
volumetric data.

History of Volume Visualization

1970 First report - 3D oscillioscopic images
1970's Medical imaging
1978 3D surface presentation [Sunguroff & Greengerg]
1979 Cuberille [Herman & Liu]
1981 Depth only shading [Herman & Udupa]
1982 Octree Machine [Meagher]

Voxel processor [Goldwasser & Reynolds]
1984 Ray casting [Tuy & Tuy]
1985 Cube architecture [Kaufman & Bakalash]

Back-to-front & Front-to-back
Depth gradient shading [Gordon et al.]
Contextual shading [Chen et al.]

History of Volume Visualization
1986 3D Scan conversion [Kaufman & Shimony]

Grey-level shading [Hoehne & Bernstein]
1987 Marching cubes [Lorensen & Kline]
1988 Volume rendering [Levoy; Derbin; Upson & Keeler; Sabella]

Dividing cubes [Cline et al.]
1989 Chapel Hill Workshop

Splatting [Westover]
1990 San Diego Workshop
1992 Boston Workshop
1994 Washington Workshop
1996 San Francisco Workshop

IEEE Symposium on Volume Visualization
IEEE Workshop on Volume Graphics
IEEE Visualization

Volume Visualization
• Iso-surface extracting and rendering
Marching Cubes (Lorensen 87)

Marching Tetrahedra

• Direct volume visualization
Ray Casting (Levoy 89)

Splatting (Westover 90)

Surface Rendering

An indirect technique used for visualizing
volume primitives by first converting
them into an intermediate surface
representation and then employing
conventional computer graphics
techniques to render them to the screen.

Volume Visualization

A direct technique for visualizing
volume visualizing volume
primitives without any
intermediate conversion of the
volumetric dataset to surface
representation .

Surface Rendering

• Intermediate representation
• Tangible surfaces
• Information on surfaces
• Continuous
• Compact representation
• Fast
• Iso-surfacing

Marching Cubes

• Creates triangles
• Floating point representation
• Uses case table to create triangles
• Can use general purpose polygon-based

hardware for rendering

Marching Cubes History

• Developed in 1984
• Published in Siggraph ’87
• Marching Cubes in AVS and SGI

Explorer, and everywhere
• 12,537 citations by google scholar
• Lorensen won achievement award at

IEEE Visualization 2004

Marching Cubes Algorithm

1. Create a cube
2. Classify each vertex
3. Build an index
4. Get edge list
5. Interpolate triangle vertices
6. Calculate and interpolate normals

Marching Cubes
Step 1 - Create a cube
• Consider a cube defined by eight data

values, four from slice k, and four from
slice k + 1

Marching Cubes

Step 2 - Classify each vertex
• Classify each vertex of the cube as to

whether it lies outside surface or inside
the surface
Outside if vertex value < surface value

Inside if vertex value >= surface

Marching Cubes
Step 3 - Build an index
• Create an index between 0 and 255

from the binary labeling of each vertex

Marching Cubes

Step 4 - Get edge list
• For a given index, access a list of cubes

edges that contain a triangle vertex
• Using symmetry of the cube, all 256

cases can be generated from fourteen
cases

Marching Cubes

Marching Cubes
Step 5 - Interpolate triangle vertices
• For each triangle edge, find the vertex using

linear interpolation of the density values
x = i + (value - D(i)) / (D(i + 1) - D(i))

Marching Cubes

Step 6 - Calculate and interpolate normals
• For each triangle edge, find the vertex

normals from the gradient of the density data
using central differences
Gx = D(i + 1, j, k) - D(i - 1, j, k)
Gy = D(i , j + 1, k) - D(i , j - 1, k)
Gz = D(i , j, k + 1) - D(i , j, k - 1)

Marching Cubes

Extensions for Analysis
• Originally developed to produce surfaces for

rendering
• Ambiguous cases can result in holes
• Many solutions proposed by many authors
Face patching
Tetrahedra
Function dependent triangulation

Marching Cubes
Ambiguous Cases
• Occur on any cube face that has adjacent vertices with

different states, but diagonal vertices in same state
• There are six of these cases

Volume Rendering

• Direct projection
• Translucent gel
• Information inside objects
• Discrete
• Large datasets
• Slow
• Classification
• Compositing

Direct Volume Rendering
• Ray Casting
• Levoy 89 CG&A

Ray Traversal Methods
• Around that time:

View plane

Data set

Volumetric Ray-Casting

Basic Ray-Casting Algorithm

Data set

View Plane

Basic Ray-Casting Algorithm

Data set

Viewing ray

View Plane

Basic Ray-Casting Algorithm

Data set

Viewing rays

View Plane

Basic Ray-Casting Algorithm

Data set

View Plane

Basic Ray-Casting Algorithm

Data set

View Plane

Basic Ray-Casting Algorithm

Data set

View Plane

Basic Ray-Casting Algorithm

Data set

1. Interpolation

200

0

60

0

0

015

View Plane

Basic Ray-Casting Algorithm

Data set

1. Interpolation

2. Gradient estimation

Estimated Gradient
= (Δx, Δy, Δz)

View Plane

Basic Ray-Casting Algorithm

View Plane

Data set

1. Interpolation

2. Gradient estimation

3. Classification RGBα

Density

0 30 100 130 255
Air Bone Muscle Blood

α=0 α=1
gray

α=.2
pink

α=.5
red

Basic Ray-Casting Algorithm

Data set

1. Interpolation

2. Gradient estimation

3. Classification

4. Shading

View Plane

Normal
Light reflectedLight

Eyeγ

New Intensity = Intensity • cos(γ)

β β

Basic Ray-Casting Algorithm

Data set

1. Interpolation

2. Gradient estimation

3. Classification

4. Shading

5. Compositing

View Plane new color = front color • front α
+ back color • (1 - front α)

Back-to-Front
compositing :

Basic Ray-Casting Algorithm

Data set

View Plane

1. Interpolation

2. Gradient estimation

3. Classification

4. Shading

5. Compositing

Basic Ray-Casting Algorithm

Data set

View Plane

1. Interpolation

2. Gradient estimation

3. Classification

4. Shading

5. Compositing

Image Plane

Aliasing!
Perspective Projection

Supersampling

Image Plane

Too Expensive!

Adaptive Sampling

dd2d

Image Plane

Kreeger, Dachille, Chen, Bitter, Kaufman, VolVis 98

LGN Nerve Cell

a) Undersampling

b) Adaptive Sampling

c) Undersampling Zoom

d) Adaptive Sampling Zoom

Perspective Projection

Oversampling Adaptive Sampling Undersampling

53 checker box room (1283 volume)

Perspective Projection

Human Tooth CT

(f)RGB(f)

f

RGB

Shading,
Compositing…

Simple (usual) case: Map data
value f to color and opacity

Transfer Functions (TFs)

Classification

• Transfer Function

Volume Splatting

• Volume = field of 3D interpolation kernels
One kernel at each grid voxel

• Each kernel leaves a 2D footprint on screen
Voxel contribution = footprint ꞏ(C, opacity)

• Weighted footprints accumulate into image

voxel kernels screen footprints =
splats

screen

Volume Splatting

• Volume = field of 3D interpolation kernels
One kernel at each grid voxel

• Each kernel leaves a 2D footprint on screen
Voxel contribution = footprint ꞏ(C, opacity)

• Weighted footprints accumulate into image

voxel kernels screen footprints =
splats

screen

Volume Splatting

• Volume = field of 3D interpolation kernels
One kernel at each grid voxel

• Each kernel leaves a 2D footprint on screen
Voxel contribution = footprint ꞏ(C, opacity)

• Weighted footprints accumulate into image

voxel kernels screen footprints =
splats

screen

Volume Splatting

• Volume = field of 3D interpolation kernels
One kernel at each grid voxel

• Each kernel leaves a 2D footprint on screen
Voxel contribution = footprint ꞏ(C, opacity)

• Weighted footprints accumulate into image

voxel kernels screen footprints =
splats

screen

Volume Splatting: Highlights

• Footprints can be pre-integrated
fast voxel projection

• Advantages over raycasting:
Fast: voxel interpolation is in 2D on screen

Hardware acceleration

More accurate reconstruction (afford better kernels)

Only relevant voxels must be projected

Volume Rendering Expenses

• 2GBytes storage

• 60GBytes/second memory bandwidth

• 900 billion instructions/second

1024 16-bit volume @ 30 Hz3

(30 instructions per voxel)

(one access per voxel)

Volume Rendering Using
Conventional Graphics Hardware

HP Voxelator Architecture

VolumePro (Cube-4)

Cube-2

Cube-1

Cube Architecture Design

Cube-5

papers patent

VolumePro / VolVis

VolumePro / VolVis

Volumetric Display

http://www.lightspacetech.com/

