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MRI / CT / PET / Ultrasonography

Confocal Microscopy

Micro-Tomography

SimulationVoxelization

Volume Datasets



Virtual colonoscopy Radiation Therapy

Biomedical Visualization

Volumetric Application



Volumetric Application

Computational 
Fluid Dynamics (CFD)

High-potential
iron proteins

Scientific Visualization



Amorphous Phenomena

Volumetric Application



Sculpting System
Volumetric Application



Volume Graphics



Volumetric objects
• have information inside it

• not consist of explicit surfaces and 
edges

• May be too voluminous to be 
represented geometrically



Volume Visualization Objective

• Peer inside voumetric objects

• Probe into voluminous & complex 
structures



Volume Visualization

A visualization method concerned 
with the representation, 
manipulation, and rendering of 
volumetric data. 



History of Volume Visualization

1970 First report - 3D oscillioscopic images 
1970's  Medical imaging 
1978 3D surface presentation [Sunguroff & Greengerg] 
1979 Cuberille [Herman & Liu] 
1981 Depth only shading [Herman & Udupa] 
1982 Octree Machine [Meagher] 

Voxel processor [Goldwasser & Reynolds] 
1984 Ray casting [Tuy & Tuy] 
1985 Cube architecture [Kaufman & Bakalash] 

Back-to-front & Front-to-back 
Depth gradient shading [Gordon et al.] 
Contextual shading [Chen et al.] 





History of Volume Visualization
1986 3D Scan conversion [Kaufman & Shimony] 

Grey-level shading [Hoehne & Bernstein] 
1987 Marching cubes [Lorensen & Kline] 
1988 Volume rendering [Levoy; Derbin; Upson & Keeler; Sabella] 

Dividing cubes [Cline et al.] 
1989 Chapel Hill Workshop 

Splatting [Westover] 
1990 San Diego Workshop 
1992 Boston Workshop 
1994 Washington Workshop 
1996 San Francisco Workshop

IEEE Symposium on Volume Visualization 
IEEE Workshop on Volume Graphics 
IEEE Visualization



Volume Visualization
• Iso-surface extracting and rendering
Marching Cubes (Lorensen 87) 

Marching Tetrahedra

• Direct volume visualization
Ray Casting (Levoy 89)

Splatting (Westover 90)



Surface Rendering

An indirect technique used for visualizing 
volume primitives by first converting 
them into an intermediate surface 
representation and then employing 
conventional computer graphics 
techniques to render them to the screen. 





Volume Visualization

A direct technique for visualizing 
volume visualizing volume 
primitives without any 
intermediate conversion of the 
volumetric dataset to surface 
representation . 





Surface Rendering

• Intermediate representation 
• Tangible surfaces
• Information on surfaces 
• Continuous
• Compact representation 
• Fast
• Iso-surfacing



Marching Cubes

• Creates triangles
• Floating point representation
• Uses case table to create triangles
• Can use general purpose polygon-based 

hardware for rendering



Marching Cubes History

• Developed in 1984
• Published in Siggraph ’87
• Marching Cubes in AVS and SGI 

Explorer, and everywhere
• 12,537 citations by google scholar
• Lorensen won achievement award at 

IEEE Visualization 2004



Marching Cubes Algorithm

1. Create a cube
2. Classify each vertex
3. Build an index
4. Get edge list
5. Interpolate triangle vertices
6. Calculate and interpolate normals



Marching Cubes
Step 1 - Create a cube
• Consider a cube defined by eight data 

values, four from slice k, and four from 
slice k + 1



Marching Cubes

Step 2 - Classify each vertex
• Classify each vertex of the cube as to 

whether it lies outside surface or inside 
the surface
Outside if vertex value < surface value

Inside if vertex value >= surface





Marching Cubes
Step 3 - Build an index
• Create an index between 0 and 255 

from the binary labeling of each vertex



Marching Cubes

Step 4 - Get edge list
• For a given index, access a list of cubes 

edges that contain a triangle vertex
• Using symmetry of the cube, all 256 

cases can be generated from fourteen 
cases



Marching Cubes





Marching Cubes
Step 5 - Interpolate triangle vertices
• For each triangle edge, find the vertex using 

linear interpolation of the density values
x = i + (value - D(i)) / (D(i + 1) - D(i))



Marching Cubes

Step 6 - Calculate and interpolate normals
• For each triangle edge, find the vertex 

normals from the gradient of the density data 
using central differences
Gx = D(i + 1, j, k) - D(i - 1, j, k)
Gy = D(i , j + 1, k) - D(i , j - 1, k)
Gz = D(i , j, k + 1) - D(i , j, k - 1)





Marching Cubes

Extensions for Analysis
• Originally developed to produce surfaces for 

rendering
• Ambiguous cases can result in holes
• Many solutions proposed by many authors
Face patching
Tetrahedra
Function dependent triangulation



Marching Cubes
Ambiguous Cases
• Occur on any cube face that has adjacent vertices with 

different states, but diagonal vertices in same state
• There are six of these cases





Volume Rendering

• Direct projection
• Translucent gel
• Information inside objects
• Discrete
• Large datasets
• Slow
• Classification
• Compositing



Direct Volume Rendering
• Ray Casting
• Levoy 89 CG&A



Ray Traversal Methods
• Around that time: 



View plane

Data set

Volumetric Ray-Casting



Basic  Ray-Casting  Algorithm

Data set

View Plane



Basic  Ray-Casting  Algorithm

Data set

Viewing ray

View Plane



Basic  Ray-Casting  Algorithm

Data set

Viewing rays

View Plane



Basic  Ray-Casting  Algorithm

Data set

View Plane



Basic  Ray-Casting  Algorithm

Data set

View Plane



Basic  Ray-Casting  Algorithm

Data set

View Plane



Basic  Ray-Casting  Algorithm

Data set

1. Interpolation
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Basic  Ray-Casting  Algorithm

Data set

1. Interpolation

2. Gradient estimation

Estimated Gradient 
= (Δx, Δy, Δz)

View Plane



Basic  Ray-Casting  Algorithm

View Plane

Data set

1. Interpolation

2. Gradient estimation

3. Classification RGBα

Density

0 30 100 130 255
Air Bone Muscle Blood

α=0 α=1
gray

α=.2
pink

α=.5
red



Basic  Ray-Casting  Algorithm

Data set

1. Interpolation

2. Gradient estimation

3. Classification

4. Shading

View Plane

Normal
Light reflectedLight

Eyeγ

New Intensity  =  Intensity • cos(γ)

β β



Basic  Ray-Casting  Algorithm

Data set

1. Interpolation

2. Gradient estimation

3. Classification

4. Shading

5. Compositing

View Plane new color = front color •       front α 
+ back color • (1 - front α)

Back-to-Front
compositing :



Basic  Ray-Casting  Algorithm

Data set

View Plane

1. Interpolation

2. Gradient estimation

3. Classification

4. Shading

5. Compositing



Basic  Ray-Casting  Algorithm

Data set

View Plane

1. Interpolation

2. Gradient estimation

3. Classification

4. Shading

5. Compositing



Image Plane

Aliasing!
Perspective Projection



Supersampling

Image Plane

Too Expensive!



Adaptive Sampling

dd2d

Image Plane

Kreeger, Dachille, Chen, Bitter, Kaufman, VolVis 98



LGN  Nerve  Cell 

a) Undersampling

b) Adaptive Sampling

c) Undersampling Zoom

d) Adaptive Sampling Zoom

Perspective Projection



Oversampling Adaptive Sampling Undersampling

53 checker box room (1283 volume)

Perspective Projection



Human Tooth CT

(f)RGB(f)

f 

RGB

Shading,
Compositing…

Simple (usual) case: Map data 
value f to color and opacity



Transfer Functions (TFs)



Classification

• Transfer Function



Volume Splatting

• Volume = field of 3D interpolation kernels
One kernel at each grid voxel

• Each kernel leaves a 2D footprint on screen
Voxel contribution = footprint ꞏ(C, opacity)

• Weighted footprints accumulate into image

voxel kernels screen footprints = 
splats

screen
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Volume Splatting

• Volume = field of 3D interpolation kernels
One kernel at each grid voxel

• Each kernel leaves a 2D footprint on screen
Voxel contribution = footprint ꞏ(C, opacity)

• Weighted footprints accumulate into image

voxel kernels screen footprints = 
splats

screen



Volume Splatting: Highlights

• Footprints can be pre-integrated
fast voxel projection

• Advantages over raycasting:
Fast: voxel interpolation is in 2D on screen

Hardware acceleration

More accurate reconstruction (afford better kernels)

Only relevant voxels must be projected



Volume Rendering Expenses

• 2GBytes storage

• 60GBytes/second memory bandwidth

• 900 billion instructions/second

1024    16-bit volume @ 30 Hz3

(30 instructions per voxel)

(one access per voxel)



Volume Rendering Using 
Conventional Graphics Hardware



HP Voxelator Architecture



VolumePro (Cube-4)

Cube-2 

Cube-1 

Cube Architecture Design

Cube-5

papers patent



VolumePro / VolVis



VolumePro / VolVis



Volumetric Display

http://www.lightspacetech.com/


