

3Baoquan Chen 2018

Ray Casting

• A very flexible visibility algorithm

loop y

loop x

shoot ray from eye point through
pixel (x,y) into scene

intersect with all surfaces, find
first one the ray hits

shade that surface point to compute
pixel (x,y)’s color

4Baoquan Chen 2018

A Simple Ray Caster Program

Raycast() // generate a picture
for each pixel x,y

color(pixel) = Trace(ray_through_pixel(x,y))

Trace(ray) // fire a ray, return RGB radiance
// of light traveling backward along it

object_point = Closest_intersection(ray)
if object_point return Shade(object_point, ray)
else return Background_Color

Closest_intersection(ray)
for each surface in scene

calc_intersection(ray, surface)
return the closest point of intersection to viewer
(also return other info about that point, e.g., surface normal,

material properties, etc.)

Shade(point, ray) // return radiance of light leaving
// point in opposite of ray direction

calculate surface normal vector
use Phong illumination formula (or something similar)
to calculate contributions of each light source

5Baoquan Chen 2018

Ray Casting

• This can be easily generalized to give
recursive ray tracing, that will be
discussed later

• calc_intersection (ray, surface) is the
most important operation

– compute not only coordinates, but also
geometric or appearance attributes at
the intersection point

6Baoquan Chen 2018

• How to represent a ray?

–A ray is p+td: p is ray origin, d the
direction

–t=0 at origin of ray, t>0 in positive
direction of ray

–typically assume ||d||=1

–p and d are typically computed in world
space

Ray-Surface Intersections

7Baoquan Chen 2018

Ray-Surface Intersections

• Surfaces can be represented by:

–Implicit functions: f(x) = 0

–Parametric functions: x = g(u,v)

Parametric

u

x(u) = r cos (u)
y(u) = r sin (u)

Implicit

F(x,y) = x² + y² - r²

F<0

F>0

F=0

8Baoquan Chen 2018

Ray-Surface Intersections

• Compute Intersections:

–Substitute ray equation for x

–Find roots

–Implicit: f(p + td) = 0

» one equation in one unknown – univariate
root finding

–Parametric:p + td - g(u,v) = 0

» three equations in three unknowns (t,u,v) –
multivariate root finding

–For univariate polynomials, use closed form
solution otherwise use numerical root finder

9Baoquan Chen 2018

The Devil’s in the Details

• General case: non-linear root finding problem

• Ray casting is simplified using object-oriented
techniques

–Implement one intersection method for each
type of surface primitive

–Each surface handles its own intersection

• Some surfaces yield closed form solutions

–quadrics: spheres, cylinders, cones,
elipsoids, etc…)

–Polygons

–tori, superquadrics, low-order spline surface
patches

10Baoquan Chen 2018

Ray-Sphere Intersection

• Ray-sphere intersection is an easy case

• A sphere’s implicit function is: x2+y2+z2-r2=0 if sphere
at origin

• The ray equation is: x = px+tdx
y = py+tdy
z = pz+tdz

• Substitution gives: (px+tdx)
2 + (py+tdy)

2 + (pz+tdz)
2 - r2 =

0

• A quadratic equation in t.

• Solve the standard way: A = dx
2+dy

2+dz
2 = 1 (unit vector)

B = 2(pxdx+pydy+pzdz)

C = px
2+py

2+pz
2 - r2

• Quadratic formula has two roots: t=(-B±sqrt(B2-4C))/2

–which correspond to the two intersection points

–negative discriminant means ray misses sphere

At2+Bt+C=0

11Baoquan Chen 2018

Ray-Polygon Intersection

• Assuming we have a planar polygon

–first, find intersection point of ray with plane

–then check if that point is inside the polygon

• Latter step is a point-in-polygon test in 3-D:

–inputs: a point x in 3-D and the vertices of a polygon in 3D

–output: INSIDE or OUTSIDE

–problem can be reduced to point-in-polygon test in 2-D

• Point-in-polygon test in 2-D:

–easiest for triangles

–easy for convex n-gons

–harder for concave polygons

–most common approach: subdivide all polygons into triangles

–for optimization tips, see article by Haines in the book
Graphics Gems IV

12Baoquan Chen 2018

Ray-Plane Intersection

• Ray: x=p+td

–where p is ray origin, d is ray direction. we’ll
assume ||d||=1 (this simplifies the algebra later)

–x=(x,y,z) is point on ray if t>0

• Plane: (x-q)•n=0

–where q is reference point on plane, n is plane normal.
(some might assume ||n||=1; we won’t)

–x is point on plane

–if what you’re given is vertices of a polygon

» compute n with cross product of two (non-parallel)
edges

» use one of the vertices for q

–rewrite plane equation as x•n+D=0

» equivalent to the familiar formula Ax+By+Cz+D=0,
where (A,B,C)=n, D=-q•n

» fewer values to store

13Baoquan Chen 2018

Ray-Plane Intersection

• Steps:

–substitute ray formula into plane eqn,
yielding 1 equation in 1 unknown (t).

–solution: t = -(p•n+D)/(d•n)

» note: if d•n=0 then ray and plane are
parallel - REJECT

» note: if t<0 then intersection with plane
is behind ray origin - REJECT

–compute t, plug it into ray equation to
compute point x on plane

14Baoquan Chen 2018

Projecting A Polygon from 3-D to 2-D

• Point-in-polygon testing is simpler and faster if we do it in
2-D

–The simplest projections to compute are to the xy, yz, or
zx planes

–If the polygon has plane equation Ax+By+Cz+D=0, then

» |A| is proportional to projection of polygon in yz plane

» |B| is proportional to projection of polygon in zx plane

» |C| is proportional to projection of polygon in xy plane

» Example: the plane z=3 has (A,B,C,D)=(0,0,1,-3), so |C|
is the largest and xy projection is best. We should do
point-in-polygon testing using x and y coords.

–In other words, project into the plane for which the
perpendicular component of the normal vector n is largest

15Baoquan Chen 2018

Projecting A Polygon from 3-D to 2-D

• Optimization:

–We should optimize the inner loop (ray-triangle
intersection testing) as much as possible

–We can determine which plane to project to, for
each triangle, as a preprocess

• Point-in-polygon testing in 2-D is still an
expensive operation

• Point-in-rectangle is a special case

17Baoquan Chen 2018

Interpolated Shading for Ray Casting

• Suppose we know colors or normals at vertices

–How do we compute the color/normal of a specified point
inside?

• Color depends on distance to each vertex

–How to do linear interpolation between 3 points?

–Answer: barycentric coordinates

• Useful for ray-triangle intersection testing too!

18Baoquan Chen 2018

Barycentric Coordinates in 1-D

• Linear interpolation between colors C0 and C1 by t

C  (1 t)C0  tC1

C is between C0 and C1  , [0,1]



0C C1
C

• Geometric intuition:

–We are weighting each vertex by ratio of distances (or
areas)

C C0 C1 where     1

• We can rewrite this as

•  and  are called barycentric coordinates

19Baoquan Chen 2018

dx

dy

C

0C

3210)1()1(()1)(1(CCCCC dxdydydxdydxdydx 

1C

2C
0C

• Bilinear interpolation: 4 points instead of 2

Barycentric Coordinates in 2-D

   

20Baoquan Chen 2018

Barycentric Coordinates in 2-D

• Now suppose we have 3 points instead of 2

C is inside C0C1C2  , , [0,1]

C C0 C1  C2 where     1

• Define three barycentric coordinates: , , 
0C

1C

2C

• How to define , , and  ?

C

21Baoquan Chen 2018

Barycentric Coordinates for a Triangle

• Define barycentric coordinates to be ratios of
triangle areas

1C

0C

2C






 
Area CC1C2 
Area C0C1C2 

 
Area C0CC2 
Area C0C1C2 

 
Area C0C1C 
Area C0C1C2 

 1   

C

22Baoquan Chen 2018

• in 3-D

–Area(ABC) = parallelogram area / 2 = ||(B-A) x (C-
A)||/2

–faster: project to xy, yz, or zx, use 2D formula

• in 2-D

–Area(xy-projection(ABC)) = [(bx-ax)(cy-ay) – (cx-
ax)(by-ay)]/2
project A,B,C to xy plane, take z component of cross product

–positive if ABC is CCW (counterclockwise)

Computing Area of a Triangle

A B

C

23Baoquan Chen 2018

Computing Area of a Triangle - Algebra

That short formula,

Area(ABC) = [(bx-ax)(cy-ay) – (cx-ax)(by-ay)]/2
Where did it come from?

Area(ABC) 
1
2

a
x
b
x
c
x

a
y
b
y
c
y

1 1 1


b
x
c
x

b
y
c
y


a
x
c
x

a
y
c
y


a
x
b
x

a
y
b
y












÷
÷/ 2

 (b
x
c
y
 c

x
b
y
 c

x
a
y
 a

x
c
y
 c

x
a
y
 a

x
c
y
)/ 2

ax bx cx

cy

ay

by

The short & long formulas above agree.

Short formula better because fewer multiplies. Speed is important!

Can we explain the formulas geometrically?

24Baoquan Chen 2018

One Explanation

Area(ABC) = area of the rectangle minus
area of the red shaded triangles

25Baoquan Chen 2018

Another Explanation

Area(ABC) =[(bx-ax)(cy-ay) – (cx-ax)(by-ay)]/2

is a sum of rectangle areas, divided by 2.

cy

/2 =

ax bx cx

by

ay

it works!

=
!

=
!

since triangle area = base*height/2

[]+ /2 = /2 =
?

(bx-ax)(cy-ay) (cx-ax)(ay-by)

ax bx cx

cy

by

ay

26Baoquan Chen 2018

Uses for Barycentric Coordinates

• Point-in-triangle testing!

–point is in triangle iff , , 
the same sign

–note similarity to standard
point-in-polygon methods that
use tests of form aix+biy+ci<0
for each edge i

• Can use barycentric coordinates to interpolate any quantity
–color interpolation – Gouraud shading

–normal interpolation – realizing Phong Shading

–(s,t) texture coordinate interpolation – texture mapping

0N

1N

2N







27Baoquan Chen 2018

Ray Tracing

1. (Recursive) Ray Tracing
2. Antialiasing
3. Motion Blur
4. Distribution Ray Tracing
5. other fancy stuff

28Baoquan Chen 2018

Assumptions

• Simple shading (typified by OpenGL, z-buffering, and Phong
illumination model) assumes:

–direct illumination (light leaves source, bounces at
most once, enters eye)

–no shadows

–opaque surfaces

–point light sources

–sometimes fog

• (Recursive) ray tracing relaxes that, simulating:

–specular reflection

–shadows

–transparent surfaces (transmission with refraction)

–sometimes indirect illumination (a.k.a. global
illumination)

–sometimes area light sources

–sometimes fog

29Baoquan Chen 2018

Ray Types for Ray Tracing
• We’ll distinguish four ray types:

–Eye rays: originating at the eye

–Shadow rays: from surface point toward light source

–Reflection rays: from surface point in mirror direction

–Transmission rays: from surface point in refracted
direction

30Baoquan Chen 2018

Ray Tracing Algorithm

–send ray from eye through each pixel

–compute point of closest intersection with a scene
surface

–shade that point by computing shadow rays

–spawn reflected and refracted rays, repeat

31Baoquan Chen 2018

Specular Reflection Rays

Reflected Ray

Eye

N

•An eye ray hits a shiny surface

–We know the direction from
which a specular reflection
would come, based on the
surface normal

–Fire a ray in this reflected
direction

–The reflected ray is treated
just like an eye ray: it hits
surfaces and spawns new rays

–Light flows in the direction
opposite to the rays (towards
the eye), is used to
calculate shading

–It’s easy to calculate the
reflected ray direction

P

A Shiny Surface

Note: arrowheads show the direction
in which we're tracing the rays, not
the direction the light travels.

32Baoquan Chen 2018

Specular Transmission Rays

• To add transparency:

–Add a term for light that’s coming from within
the object

–These rays are refracted (bent) when passing
through a boundary between two media with
different refractive indices

–When a ray hits a transparent surface fire a
transmission ray into the object at the proper
refracted angle

–If the ray passes through the other side of the
object then it bends again (the other way)

33Baoquan Chen 2018

Refraction

• Refraction:

–The bending of light due to its different
velocities through different materials

–rays bend toward the normal when going from
sparser to denser materials (e.g. air to
water), away from normal in opposite case

n

n1

n2

1

2

34Baoquan Chen 2018

Refraction

• Refractive index:

–Light travels at speed c/n in a material of
refractive index n
» c is the speed of light in a vacuum

» c varies with wavelength, hence rainbows and prisms

–Use Snell’s law n1 sin 1 = n2 sin 2 to
derive refracted ray direction
» note: ray dir. can be computed without trig
functions (only sqrts)

MATERIAL INDEX OF REFRACTION

air/vacuum 1

water 1.33

glass about 1.5

diamond 2.4

n

n1

n2

1

2

35Baoquan Chen 2018

Ray Hierarchy
EYE

L1 L2

Obj1

Obj2

Obj3

Shadow Ray

Other Ray

Eye

Obj1

RAY TREE
RAY PATHS (BACKWARD)

L1

L2

T
R

Obj2
Obj3

L1

L2

L1

L2
R

T R

X X

X

36Baoquan Chen 2018

Ray Casting vs. Ray Tracing

Ray Casting -- 1 bounce

Ray Tracing -- 2 bounce Ray Tracing -- 3 bounce

37Baoquan Chen 2018

Review: A Simple Ray Caster Program

Raycast() // generate a picture
for each pixel x,y

color(pixel) = Trace(ray_through_pixel(x,y))

Trace(ray) // fire a ray, return RGB radiance
// of light traveling backward along it

object_point = Closest_intersection(ray)
if object_point return Shade(object_point, ray)
else return Background_Color

Closest_intersection(ray)
for each surface in scene

calc_intersection(ray, surface)
return the closest point of intersection to viewer
(also return other info about that point, e.g., surface normal,

material properties, etc.)

Shade(point, ray) // return radiance of light leaving
// point in opposite of ray direction

calculate surface normal vector
use Phong illumination formula (or something similar)
to calculate contributions of each light source

38Baoquan Chen 2018

From a Ray Caster to a Ray Tracer

Shade(point, ray) /* return radiance along ray */

radiance = black; /* initialize color vector */
for each light source

shadow_ray = calc_shadow_ray(point,light)
if !in_shadow(shadow_ray,light)

radiance += phong_illumination(point,ray,light)
if material is specularly reflective

radiance += spec_reflectance *
Trace(reflected_ray(point,ray)))

if material is specularly transmissive
radiance += spec_transmittance *

Trace(refracted_ray(point,ray)))

return radiance

40Baoquan Chen 2018

Problem with Simple Ray Tracing: Aliasing

41Baoquan Chen 2018

Aliasing

• Ray tracing shoots one ray per pixel

• But a pixel represents an area; one ray samples
only one point with the area; an area consists
infinite number of points

–These points may not all have the same color

–This leads to aliasing

» jaggies

» moire patterns

• How do we fix this problem?

–Recall antialiasing in texture mapping

42Baoquan Chen 2018

Antialiasing: Supersampling

• We talked about two antialiasing methods
–Supersampling

–Pre-filtering (MIP-mapping)

• Here we use supersampling

–Fire more than one ray for each pixel (e.g.,
a 3x3 grid of rays)

–Average the results using a filter (or some
kind of filter)

43Baoquan Chen 2018

Supersampling

44Baoquan Chen 2018

Antialiasing: Adaptive Supersampling
• Supersampling can be done adaptively

–divide pixel into 2x2 grid, trace 5 rays (4 at corners, 1 at
center)

–if the colors are similar then just use their average
–otherwise recursively subdivide each cell of grid
–keep going until each 2x2 grid is close to uniform or limit
is reached

–filter the result

• Behavior of adaptive supersampling
–Areas with fairly constant appearance are sparsely sampled
–Areas with lots of variability are heavily sampled

• Issues
–even with massive supersampling visible aliasing is possible
when the sampling grid interacts with regular structures

–problem is, objects tend to be almost aligned with sampling
grid

–noticeable beating, moire patterns, etc… are possible

45Baoquan Chen 2018

Antialiasing: Stochastic Adaptive
Supersampling

• Adaptive supersampling can be done stochasticly

–instead of a regular grid, subsample randomly (or
pseudo)

–aliasing is replaced by less visually annoying
noise!

–adaptively sample statistically

–keep taking samples until the color estimates
converge

–How?

» jittering: perturb a regular grid

» Jitter pattern can be pre-generated (designed)

» this can be employed in OpenGL rendering as
well

46Baoquan Chen 2018

Temporal Aliasing

• Aliasing happens in time as well as space

–the sampling rate is the frame rate, 30Hz for NTSC
video, 24Hz for film

–fast moving objects move large distances between frames

–if we point-sample time, objects have a jerky look

• To avoid temporal aliasing we need to filter in time too

–so compute frames at 120Hz and average them together
(with appropriate weights)?

–fast-moving objects become blurred streaks

• Real media (film and video) automatically do temporal
anti-aliasing

–photographic film integrates over the exposure time

–video cameras have persistence (memory)

–this shows up as motion blur in the photographs

47Baoquan Chen 2018

Motion Blur

• Apply stochastic sampling to time as well as space

• Assign a time as well as an image position to each ray

• The result is still-frame motion blur and smooth
animation

• This is an example of distribution ray tracing

48Baoquan Chen 2018

The Classic Example of Motion Blur

• From Foley et. al.
Plate III.16

• Rendered using
distribution ray
tracing at 4096x3550
pixels, 16 samples per
pixel.

• Note motion-blurred
reflections and shadows
with penumbrae cast by
extended light sources.

49Baoquan Chen 2018

Distribution Ray Tracing

• We’ve done

–distribute rays throughout a pixel to get spatial
antialiasing

–distribute rays in time to get temporal antialiasing
(motion blur)

• We can

–distribute rays in reflected ray direction to simulate
gloss

–distribute rays across area light source to simulate
penumbras (soft shadows)

–distribute rays throughout lens area to simulate depth of
field

–distribute rays across hemisphere to simulate diffuse
interreflection (radiosity)

• a.k.a. “distributed ray tracing” or stochastic ray tracing

• powerful idea! (but can get slow)

50Baoquan Chen 2018

Gloss and Highlights

• Simple ray tracing spawns only one reflected ray
• But Phong illumination models a cone of rays

–Produces fuzzy highlights
–Change fuzziness (cone width) by varying the
shininess parameter

• The solution is to spawn a cluster of rays
• Again, stochastic sampling can be used

–Stochastically sample rays within the cone
–Sampling probability drops off sharply away from the
specular angle

–Highlights can be soft, blurred reflections of other
objects

51Baoquan Chen 2018

Soft Shadows

• Point light sources produce sharp shadow edges

–the point is either shadowed or not

–only one ray is required
• With an extended light source the surface point may be
partially visible to it (partial eclipse)

–only part of the light from the sources reaches the
point

–the shadow edges are softer

–the transition region is the penumbra
• Distribution ray tracing can simulate this:

–fire shadow rays from random
points on the source

–weight them by the brightness

–the resulting shading depends on
the fraction of the obstructed
shadow rays

source

surface

opaque
object

shadow
rays

52Baoquan Chen 2018

Soft Shadows

source

surface

opaque
object

shadow
rays

fewer rays,
more noise

more rays,
less noise

53Baoquan Chen 2018

Depth of Field

• The pinhole camera model only approximates real optics

–real cameras have lenses with focal lengths

–only one plane is truly in focus

–points away from the focus project as disks

–the further away from the focus the larger the
disk

• the range of distance that appear in focus is the depth of
field

• simulate this using stochastic sampling through different
parts of the lens

Image

Lens

Surface

