

Ray Casting

- A very flexible visibility algorithm loop y
 - loop x

shoot ray from eye point through
 pixel (x, y) into scene

intersect with all surfaces, find
first one the ray hits

shade that surface point to compute
 pixel (x, y)' s color

A Simple Ray Caster Program

Raycast() // generate a picture for each pixel x,y $color(pixel) = Trace(ray_through_pixel(x,y))$ Trace(ray) // fire a ray, return RGB radiance // of light traveling backward along it object_point = Closest_intersection(ray) if object_point return Shade(object_point, ray) else return Background_Color Closest_intersection(ray) for each surface in scene calc_intersection(ray, surface) return the *closest* point of intersection to viewer (also return other info about that point, e.g., surface normal, material properties, etc.) Shade(point, ray) // return radiance of light leaving // point in opposite of ray direction calculate surface normal vector use Phong illumination formula (or something similar) to calculate contributions of each light source

Ray Casting

- This can be easily generalized to give recursive *ray tracing*, that will be discussed later
- calc_intersection (ray, surface) is the
 most important operation
 - compute not only coordinates, but also geometric or appearance attributes at the intersection point

Ray-Surface Intersections

• How to represent a ray?

-A ray is $p \neq td$: p is ray origin, d the direction

- t=0 at origin of ray, t>0 in positive direction of ray

-typically assume ||d||=1

-p and d are typically computed in world space

Ray-Surface Intersections

- Surfaces can be represented by:
 - Implicit functions: f(x) = 0
 - -Parametric functions: x = g(u, v)

Ray-Surface Intersections

- Compute Intersections:
 - Substitute ray equation for x
 - -Find roots
 - Implicit: f(p + td) = 0
 - »one equation in one unknown univariate
 root finding
 - -Parametric: p + td g(u, v) = 0
 - »three equations in three unknowns (t, u, v) multivariate root finding
 - For univariate polynomials, use closed form solution otherwise use numerical root finder

The Devil's in the Details

- General case: non-linear root finding problem
- Ray casting is simplified using object-oriented techniques
 - Implement one intersection method for each type of surface primitive
 - Each surface handles its own intersection
- Some surfaces yield closed form solutions
 - -quadrics: spheres, cylinders, cones, elipsoids, etc...)
 - Polygons
 - -tori, superquadrics, low-order spline surface patches

Ray-Sphere Intersection

- Ray-sphere intersection is an easy case
- A sphere's implicit function is: $x^2+y^2+z^2-r^2=0$ if sphere at origin
- The ray equation is: $x = p_x + td_x$ $y = p_y + td_y$ $z = p_z + td_z$ • Substitution gives: $(p + td)^2 + (p + td)^2 + (p + td)^2 - r^2 = td_z$
- Substitution gives: $(p_x + td_x)^2 + (p_y + td_y)^2 + (p_z + td_z)^2 r^2 = 0$
- A quadratic equation in *t*.
- Solve the standard way: $A = d_x^2 + d_y^2 + d_z^2 = 1 \text{ (unit vector)}$ $B = 2(p_x d_x + p_y d_y + p_z d_z)$ $C = p_x^2 + p_y^2 + p_z^2 r^2$
- Quadratic formula has two roots: $t=(-B\pm sqrt(B^2-4C))/2$
 - which correspond to the two intersection points

- negative discriminant means ray misses sphere Baoquan Chen 2018 10

Ray-Polygon Intersection

- Assuming we have a planar polygon
 - -first, find intersection point of ray with plane
 - then check if that point is inside the polygon
- Latter step is a point-in-polygon test in 3-D:
 - inputs: a point x in 3-D and the vertices of a polygon in 3D
 - output: INSIDE or OUTSIDE
 - -problem can be reduced to point-in-polygon test in 2-D
- Point-in-polygon test in 2-D:
 - easiest for triangles
 - -easy for convex n-gons
 - -harder for concave polygons
 - most common approach: subdivide all polygons into triangles
 - for optimization tips, see article by Haines in the book *Graphics Gems IV*

Ray-Plane Intersection

- Ray: x=p+*t*d
 - -where p is ray origin, d is ray direction. we'll assume ||d||=1 (this simplifies the algebra later)
 - -x=(x, y, z) is point on ray if t>0
- Plane: (x-q) n=0
 - -where q is reference point on plane, n is plane normal. (some might assume ||n||=1; we won't)
 - -x is point on plane
 - if what you' re given is vertices of a polygon
 - » compute n with cross product of two (non-parallel)
 edges
 - » use one of the vertices for q
 - -rewrite plane equation as $x \cdot n + D = 0$
 - » equivalent to the familiar formula Ax+By+Cz+D=0, where (A, B, C)=n, D=-q•n
 - » fewer values to store

Ray-Plane Intersection

- Steps:
 - substitute ray formula into plane eqn, yielding 1 equation in 1 unknown (t).
 - solution: $t = -(p \cdot n + D) / (d \cdot n)$
 - »note: if d•n=0 then ray and plane are
 parallel REJECT
 - »note: if t<0 then intersection with plane
 is behind ray origin REJECT</pre>
 - compute *t*, plug it into ray equation to compute point x on plane

Projecting A Polygon from 3-D to 2-D

- Point-in-polygon testing is simpler and faster if we do it in 2-D
 - -The simplest projections to compute are to the *xy*, *yz*, or *zx* planes
 - If the polygon has plane equation Ax+By+Cz+D=0, then
 - » |A| is proportional to projection of polygon in yz plane » |B| is proportional to projection of polygon in zx plane » |C| is proportional to projection of polygon in xy plane » Example: the plane z=3 has (A, B, C, D) = (0, 0, 1, -3), so |C|
 - is the largest and *xy* projection is best. We should do point-in-polygon testing using *x* and *y* coords.
 - In other words, project into the plane for which the perpendicular component of the normal vector n is largest

Projecting A Polygon from 3-D to 2-D

- Optimization:
 - -We should optimize the inner loop (ray-triangle intersection testing) as much as possible
 - -We can determine which plane to project to, for each triangle, as a preprocess
- Point-in-polygon testing in 2-D is still an expensive operation
- Point-in-rectangle is a special case

Interpolated Shading for Ray Casting

- Suppose we know colors or normals at vertices
 - How do we compute the color/normal of a specified point inside?

- Color depends on distance to each vertex
 - -How to do linear interpolation between 3 points?
 - Answer: *barycentric coordinates*
- Useful for ray-triangle intersection testing too!

Barycentric Coordinates in 1-D

• Linear interpolation between colors $\mathbf{C}_{\mathbf{0}}$ and $\mathbf{C}_{\mathbf{1}}$ by t

 $\mathbf{C} = (\mathbf{1} - t)\mathbf{C}_0 + t\mathbf{C}_1$

• We can rewrite this as

 $\mathbf{C} = \alpha \mathbf{C}_0 + \beta \mathbf{C}_1$ where $\alpha + \beta = 1$

- **C** is between \mathbf{C}_0 and $\mathbf{C}_1 \Leftrightarrow \alpha, \beta \in [0,1]$
- Geometric intuition:

• α and β are called *barycentric* coordinates

Barycentric Coordinates in 2-D

• Bilinear interpolation: 4 points instead of 2

Barycentric Coordinates in 2-D

• Now suppose we have 3 points instead of 2

- Define three barycentric coordinates: α , β , γ $\mathbf{C} = \alpha \mathbf{C}_0 + \beta \mathbf{C}_1 + \gamma \mathbf{C}_2$ where $\alpha + \beta + \gamma = 1$ \mathbf{C} is inside $\mathbf{C}_0 \mathbf{C}_1 \mathbf{C}_2 \Leftrightarrow \alpha, \beta, \gamma \in [0,1]$
- How to define α , β , and γ ?

Barycentric Coordinates for a Triangle

• Define barycentric coordinates to be ratios of triangle areas

Computing Area of a Triangle

• in 3-D

- Area(ABC) = parallelogram area / 2 = $||(B-A) \times (C-A)||/2$

-faster: project to *xy*, *yz*, or *zx*, use 2D formula

• in 2-D

 $-Area(xy-projection(ABC)) = [(b_x-a_x)(c_y-a_y) - (c_x-a_x)(b_y-a_y)]/2$

project A, B, C to xy plane, take z component of cross product
- positive if ABC is CCW (counterclockwise)

Computing Area of a Triangle - Algebra

That short formula,

Area(ABC) =
$$[(b_x - a_x)(c_y - a_y) - (c_x - a_x)(b_y - a_y)]/2$$

Where did it come from?

$$Area(ABC) = \frac{1}{2} \begin{vmatrix} a_{x} & b_{x} & c_{x} \\ a_{y} & b_{y} & c_{y} \\ 1 & 1 & 1 \end{vmatrix}$$
$$= \left(\begin{vmatrix} b_{x} & c_{x} \\ b_{y} & c_{y} \end{vmatrix} - \begin{vmatrix} a_{x} & c_{x} \\ a_{y} & c_{y} \end{vmatrix} + \begin{vmatrix} a_{x} & b_{x} \\ a_{y} & b_{y} \end{vmatrix} \stackrel{!}{\xrightarrow{i}} 2$$
$$= (b_{x}c_{y} - c_{x}b_{y} + c_{x}a_{y} - a_{x}c_{y} + c_{x}a_{y} - a_{x}c_{y})/2$$

The short & long formulas above agree.

Short formula better because fewer multiplies. Speed is important! Can we explain the formulas geometrically?

One Explanation

Area(ABC) = area of the rectangle minus area of the red shaded triangles

1

Another Explanation

Uses for Barycentric Coordinates

- Point-in-triangle testing!
 - -point is in triangle iff $\alpha,\ \beta,\ \gamma$ the same sign
 - -note similarity to standard point-in-polygon methods that use tests of form $a_ix + b_iy + c_i < 0$ for each edge i

- Can use barycentric coordinates to interpolate any quantity

 color interpolation Gouraud shading
 - -normal interpolation realizing Phong Shading
 - (s,t) texture coordinate interpolation texture mapping

Ray Tracing

- 1. (Recursive) Ray Tracing
- 2. Antialiasing
- **3. Motion Blur**
- 4. Distribution Ray Tracing
- 5. other fancy stuff

Assumptions

- Simple shading (typified by OpenGL, z-buffering, and Phong illumination model) assumes:
 - -direct illumination (light leaves source, bounces at most once, enters eye)
 - no shadows
 - opaque surfaces
 - point light sources
 - sometimes fog
- (Recursive) ray tracing relaxes that, simulating:
 - specular reflection
 - shadows
 - transparent surfaces (transmission with refraction)
 - sometimes indirect illumination (a.k.a. global illumination)
 - sometimes area light sources
- sometimes fog Baoguan Chen 2018

Ray Types for Ray Tracing

- We' 11 distinguish four ray types:
 - Eye rays: originating at the eye
 - Shadow rays: from surface point toward light source
 - Reflection rays: from surface point in mirror direction
 - Transmission rays: from surface point in refracted direction

Ray Tracing Algorithm

- send ray from eye through each pixel
- compute point of closest intersection with a scene surface
- shade that point by computing shadow rays

- spawn reflected and refracted rays, repeat Baoquan Chen 2018 30

Specular Reflection Rays

Note: arrowheads show the direction in which we're *tracing the rays*, not the direction the light travels. •An eye ray hits a shiny surface

- -We know the direction from which a specular reflection would come, based on the surface normal
- -Fire a ray in this reflected direction
- The reflected ray is treated just like an eye ray: it hits surfaces and spawns new rays
- -Light flows in the direction opposite to the rays (towards the eye), is used to calculate shading
- -It's easy to calculate the reflected ray direction

Specular Transmission Rays

- To add transparency:
 - -Add a term for light that's coming from within the object
 - These rays are refracted (bent) when passing through a boundary between two media with different refractive indices
 - -When a ray hits a transparent surface fire a *transmission ray* into the object at the proper refracted angle
 - If the ray passes through the other side of the object then it bends again (the other way)

Refraction

- Refraction:
 - The bending of light due to its different velocities through different materials
 - -rays bend toward the normal when going from sparser to denser materials (e.g. air to water), away from normal in opposite case

Refraction

• Refractive index:

-Light travels at speed c/n in a material of refractive index n

- $\gg c$ varies with wavelength, hence rainbows and prisms
- -Use Snell' s law $n_1 \sin \theta_1 = n_2 \sin \theta_2$ to derive refracted ray direction

» note: ray dir. can be computed without trig
functions (only sqrts)

MATERIAL	INDEX OF REFRACTION
air/vacuum	1
water	1.33
glass	about 1.5
diamond 2.4	
air/vacuum water glass diamond 2.4	1 1.33 about 1.5

Ray Hierarchy

Ray Casting vs. Ray Tracing

Ray Casting -- 1 bounce

Ray Tracing -- 2 bounce

Ray Tracing -- 3 bounce

Review: A Simple Ray Caster Program

Ravcast() // generate a picture for each pixel x,y $color(pixel) = Trace(ray_through_pixel(x,y))$ Trace(ray) // fire a ray, return RGB radiance // of light traveling backward along it object_point = Closest_intersection(ray) if object_point return Shade(object_point, ray) else return Background_Color Closest_intersection(ray) for each surface in scene calc_intersection(ray, surface) return the *closest* point of intersection to viewer (also return other info about that point, e.g., surface normal, material properties, etc.) Shade(point, ray) // return radiance of light leaving // point in opposite of ray direction calculate surface normal vector use Phong illumination formula (or something similar) to calculate contributions of each light source

From a Ray Caster to a Ray Tracer

Shade(point, ray) /* return radiance along ray */ /* initialize color vector */ radiance = black; for each light source shadow_ray = calc_shadow_ray(point,light) if !in_shadow(shadow_ray,light) radiance += phong_illumination(point,ray,light) if material is specularly reflective radiance += spec_reflectance * **Trace**(reflected_ray(point,ray))) if material is specularly transmissive radiance += spec_transmittance * **Trace(refracted_ray(point,ray)))** return radiance

Problem with Simple Ray Tracing: Aliasing

Aliasing

- Ray tracing shoots one ray per pixel
- But a pixel represents an area; one ray samples only one point with the area; an area consists *infinite* number of points
 - These points may not all have the same color
 - This leads to *aliasing*
 - » jaggies
 - »moire patterns
- How do we fix this problem?
 - -Recall antialiasing in texture mapping

Antialiasing: Supersampling

- We talked about two antialiasing methods
 - -Supersampling
 - -Pre-filtering (MIP-mapping)
- Here we use supersampling
 - -Fire more than one ray for each pixel (e.g., a 3x3 grid of rays)
 - -Average the results using a filter (or some kind of filter)

Supersampling

Antialiasing: Adaptive Supersampling

- Supersampling can be done *adaptively*
 - -divide pixel into 2x2 grid, trace 5 rays (4 at corners, 1 at center)
 - if the colors are similar then just use their average
 - otherwise recursively subdivide each cell of grid
 - -keep going until each 2x2 grid is close to uniform or limit is reached
 - -filter the result
- Behavior of adaptive supersampling
 - Areas with fairly constant appearance are sparsely sampled
 - -Areas with lots of variability are heavily sampled
- Issues
 - even with massive supersampling visible aliasing is possible when the sampling grid interacts with regular structures
 - -problem is, objects tend to be almost aligned with sampling grid

- noticeable beating, moire patterns, etc… are possible Baoquan Chen 2018 44

Antialiasing: Stochastic Adaptive Supersampling

- Adaptive supersampling can be done *stochasticly*
 - -instead of a regular grid, subsample randomly (or pseudo)
 - -aliasing is replaced by less visually annoying noise!
 - adaptively sample *statistically*
 - -keep taking samples until the color estimates converge
 - How?
 - » jittering: perturb a regular grid
 - »Jitter pattern can be pre-generated (designed)
 - »this can be employed in OpenGL rendering as
 well

Temporal Aliasing

- Aliasing happens in time as well as space
 - the sampling rate is the frame rate, 30Hz for NTSC video, 24Hz for film
 - fast moving objects move large distances between frames
 - if we point-sample time, objects have a jerky look
- To avoid temporal aliasing we need to filter in time too
 - so compute frames at 120Hz and average them together (with appropriate weights)?
 - fast-moving objects become blurred streaks
- Real media (film and video) automatically do temporal anti-aliasing
 - photographic film integrates over the exposure time
 - video cameras have persistence (memory)
 - this shows up as *motion blur* in the photographs

Motion Blur

- Apply stochastic sampling to time as well as space
- Assign a time as well as an image position to each ray
- The result is still-frame motion blur and smooth animation
- This is an example of distribution ray tracing

The Classic Example of Motion Blur

- From Foley et. al. Plate III.16
- Rendered using distribution ray tracing at 4096x3550 pixels, 16 samples per pixel.
- Note motion-blurred reflections and shadows with penumbrae cast by extended light sources.

Distribution Ray Tracing

- We' ve done
 - -distribute rays throughout a pixel to get spatial antialiasing
 - distribute rays in time to get temporal antialiasing (motion blur)
- We can
 - distribute rays in reflected ray direction to simulate gloss
 - -distribute rays across area light source to simulate penumbras (soft shadows)
 - -distribute rays throughout lens area to simulate depth of field
 - distribute rays across hemisphere to simulate diffuse interreflection (radiosity)
- a.k.a. "distributed ray tracing" or stochastic ray tracing
- powerful idea! (but can get slow)

Gloss and Highlights

- Simple ray tracing spawns only one reflected ray
- But Phong illumination models a cone of rays
 - Produces fuzzy highlights
 - -Change fuzziness (cone width) by varying the shininess parameter
- The solution is to spawn a cluster of rays
- Again, stochastic sampling can be used
 - -Stochastically sample rays within the cone
 - -Sampling probability drops off sharply away from the specular angle
 - -Highlights can be soft, blurred reflections of other objects

Soft Shadows

- Point light sources produce sharp shadow edges
 - the point is either shadowed or not
 - -only one ray is required
- With an extended light source the surface point may be partially visible to it (*partial eclipse*)
 - -only part of the light from the sources reaches the point
 - the shadow edges are softer
 - the transition region is the *penumbra*
- Distribution ray tracing can simulate this:
 - fire shadow rays from random points on the source
 - -weight them by the brightness
 - the resulting shading depends on the fraction of the obstructed shadow rays

Soft Shadows

fewer rays, more noise

more rays, less noise

Depth of Field

- The pinhole camera model only approximates real optics
 - real cameras have lenses with focal lengths
 - -only one plane is truly in focus
 - points away from the focus project as disks
 - the further away from the focus the larger the disk
- the range of distance that appear in focus is the *depth of field*
- simulate this using stochastic sampling through different parts of the lens

