Basic Visibility Algorithms



The Visibility Problem

o feees \/

*What is the nearest surface seen at
any point in the image?

* How would YOU solve this problem?

Baoquan Chen 20018 2



Three of the Simplest Algorithms

Painter’s Ray Casting
sort objects by z (back-to-front) loop y
loop objects loop x
loop y loop objects
loop x find object with min z
write pixel write pixel
Z-buffer

initialize z-buffer
loop objects
loop y
loop x
if z(x,y) < zbuf[x,y]
zbuf[x,y] = z(x,y)
write image pixel

Baoquan Chen 20018 3



Painter’s Algorithm

Draw
third

Draw
second —>
: / <+— Draw first

* Sort objects by depth (Z)
* Loop over objects in back—-to—front order

- Project to image
» scan convert: imagel|x, y] = shade(x,y)

Baoquan Chen 20018 4



Sorting Objects by Depth

Depth ordering is a partial ordering. QOutcomes are

s [A g & s

A occludes B B occludes A don’ t care
draw B before A draw A before B draw In elther order

Sorting objects by their zmin doesn’ t always work! (same for zmax)

4 NN\ NN

—_—7 Zmin

Sometimes ordering is cyclic! What to do? Split objects!

G . Re—C
R’/\.\B 'x % RZ/'\B

Baoquan Chen 20018 5



Painter’s Algorithm

Strengths
- Simplicity: draw objects one—at—a—time, scan convert each
- Handles transparency well

Drawbacks

- Sorting can be expensive (slower than linear in the number of
objects)

— Clumsy when ordering is cyclic, because of need to split
- Interpenetrating polygons need to be split, too
- Hard to sort non—polygonal objects

Sometimes no need to sort, or trivial

- If objects are arranged in a grid, e.g. triangles in a height
field z(x,y), such as a triangulated terrain

* Who uses it?

- Postscript interpreters

- OpenGL, if you don’ t glEnable(GL_DEPTH TEST); objects need to
be sorted first.

Baoquan Chen 20018 6



Z-Buffer Algorithm

* Initialization
loop over all x,y

zbuf[x, y] = infinity

* Drawing steps

loop over all objects

scan convert object (loop over x,7y)

if z(x,y) < zbuflx, v] /* compute z of this object at
this pixel & test */

zbuf(x,v] = z(x,v) /* update z—buffer */

image[x, y] = shade(x, y) /% update image (typically RGB)
*/

Baoquan Chen 20018 7



Z-Buffer Algorithm

* Strengths
- Simple, no sorting or splitting
- Easy to mix polygons, spheres, other geometric
primitives
* Drawbacks
- Can’ t handle transparency well

- Need good Z-buffer resolution or you get depth
ordering artifacts

» In OpenGL, this resolution is controlled by choice of
clipping planes and number of bits for depth

» Choose ratio of clipping plane depths (zfar/znear) to
be as small as possible

* Who uses it?
- OpenGL, if you glEnable(GL DEPTH TEST) ;

Baoquan Chen 20018 8



Ray Casting

* A very flexible visibility algorithm
loop y

loop x

shoot ray from eye point through
pixel (x,y) into scene

intersect with all surfaces, find
first one the ray hits

shade that surface goint to
compute pixel (x,y)’ s color

Baoquan Chen 20018 9



Comparison of Visibility Algorithms

Painter’ s:
Implementation: moderate to hard if sorting & splitting needed
Speed: fast if objects are pre—sorted, otherwise slow

Generality: sorting & splitting make it ill-suited for general
3-D rendering

Z-buffer:
Implementation: moderate, it can be implemented in hardware
Speed: fast, unless depth complexity is high

Generality: good but won” t do transparency
Ray Casting:
Implementation: easy, but hard to make it run fast
Speed: slow if many objects: cost is O((#pixels)x (#objects))

Generality: excellent, can even do CSG, transparency, shadows

Baoquan Chen 20018 10



Really Hard Visibility Problems

Extremely high scene complexity
- a building walkthrough
- A fly-by of any outdoor scene
Z-buffering requires drawing EVERY triangle for each image
- Not feasible in real time
Usually Z-buffering is combined with spatial data structures
- BSP trees are common (similar concept to octrees)
For really complex scenes, visibility isn’ t always enough
- 0Objects WAY in the distance are too small to matter

- Might as well approximate far—off objects with
simpler primitives

- This is called geometry simplification - another
big subject!

Baoquan Chen 20018 11



