
Basic Visibility Algorithms

2Baoquan Chen 20018

The Visibility Problem

•What is the nearest surface seen at
any point in the image?

•How would YOU solve this problem?

3Baoquan Chen 20018

Three of the Simplest Algorithms

Z-buffer
initialize z-buffer

loop objects

loop y

loop x

if z(x,y) < zbuf[x,y]

zbuf[x,y] = z(x,y)

write image pixel

Painter’s
sort objects by z (back-to-front)

loop objects

loop y

loop x

write pixel

Ray Casting
loop y

loop x

loop objects

find object with min z

write pixel

4Baoquan Chen 20018

Painter’s Algorithm

• Sort objects by depth (Z)

• Loop over objects in back-to-front order

–Project to image

» scan convert: image[x,y] = shade(x,y)

Draw first

Draw
second

Draw
third

5Baoquan Chen 20018

Sorting Objects by Depth
Depth ordering is a partial ordering. Outcomes are

A occludes B B occludes A don’t care

draw B before A draw A before B draw in either order

Sorting objects by their zmin doesn’t always work! (same for zmax)

Sometimes ordering is cyclic! What to do? Split objects!

B AB
A

BA

z zmin

R
B

G
R1

B

G

R2

6Baoquan Chen 20018

Painter’s Algorithm
• Strengths

–Simplicity: draw objects one-at-a-time, scan convert each

–Handles transparency well

• Drawbacks

–Sorting can be expensive (slower than linear in the number of
objects)

–Clumsy when ordering is cyclic, because of need to split

–Interpenetrating polygons need to be split, too

–Hard to sort non-polygonal objects

• Sometimes no need to sort, or trivial

–If objects are arranged in a grid, e.g. triangles in a height
field z(x,y), such as a triangulated terrain

• Who uses it?

–Postscript interpreters

–OpenGL, if you don’t glEnable(GL_DEPTH_TEST); objects need to
be sorted first.

7Baoquan Chen 20018

Z-Buffer Algorithm

• Initialization
loop over all x,y

zbuf[x,y] = infinity

• Drawing steps

loop over all objects

scan convert object (loop over x,y)
if z(x,y) < zbuf[x,y] /* compute z of this object at
this pixel & test */

zbuf[x,y] = z(x,y) /* update z-buffer */

image[x,y] = shade(x,y) /* update image (typically RGB)
*/

8Baoquan Chen 20018

Z-Buffer Algorithm

• Strengths

–Simple, no sorting or splitting

–Easy to mix polygons, spheres, other geometric
primitives

• Drawbacks

–Can’t handle transparency well

–Need good Z-buffer resolution or you get depth
ordering artifacts
» In OpenGL, this resolution is controlled by choice of
clipping planes and number of bits for depth

» Choose ratio of clipping plane depths (zfar/znear) to
be as small as possible

• Who uses it?

–OpenGL, if you glEnable(GL_DEPTH_TEST);

9Baoquan Chen 20018

Ray Casting

• A very flexible visibility algorithm

loop y

loop x
shoot ray from eye point through
pixel (x,y) into scene

intersect with all surfaces, find
first one the ray hits

shade that surface point to
compute pixel (x,y)’s color

10Baoquan Chen 20018

Comparison of Visibility Algorithms

Painter’s:

Implementation: moderate to hard if sorting & splitting needed

Speed: fast if objects are pre-sorted, otherwise slow

Generality: sorting & splitting make it ill-suited for general
3-D rendering

Z-buffer:

Implementation: moderate, it can be implemented in hardware

Speed: fast, unless depth complexity is high

Generality: good but won’t do transparency

Ray Casting:

Implementation: easy, but hard to make it run fast

Speed: slow if many objects: cost is O((#pixels)(#objects))

Generality: excellent, can even do CSG, transparency, shadows

11Baoquan Chen 20018

Really Hard Visibility Problems

• Extremely high scene complexity

–a building walkthrough

–A fly-by of any outdoor scene

• Z-buffering requires drawing EVERY triangle for each image

–Not feasible in real time
• Usually Z-buffering is combined with spatial data structures

–BSP trees are common (similar concept to octrees)
• For really complex scenes, visibility isn’t always enough

–Objects WAY in the distance are too small to matter

–Might as well approximate far-off objects with
simpler primitives

–This is called geometry simplification – another
big subject!

